Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298602

RESUMEN

Peridinin-containing dinoflagellate plastomes are predominantly encoded in nuclear genomes, with less than 20 essential chloroplast proteins carried on "minicircles". Each minicircle generally carries one gene and a short non-coding region (NCR) with a median length of approximately 400-1000 bp. We report here differential nuclease sensitivity and two-dimensional southern blot patterns, suggesting that dsDNA minicircles are in fact the minor forms, with substantial DNA:RNA hybrids (DRHs). Additionally, we observed large molecular weight intermediates, cell-lysate-dependent NCR secondary structures, multiple bidirectional predicted ssDNA structures, and different southern blot patterns when probed with different NCR fragments. In silico analysis suggested the existence of substantial secondary structures with inverted repeats (IR) and palindrome structures within the initial ~650 bp of the NCR sequences, in accordance with conversion event(s) outcomes with PCR. Based on these findings, we propose a new transcription-templating-translation model, which is associated with cross-hopping shift intermediates. Since dinoflagellate chloroplasts are cytosolic and lack nuclear envelope breakdown, the dynamic DRH minicircle transport could have contributed to the spatial-temporal dynamics required for photosystem repair. This represents a paradigm shift from the previous understanding of "minicircle DNAs" to a "working plastome", which will have significant implications for its molecular functionality and evolution.


Asunto(s)
Dinoflagelados , ARN , Dinoflagelados/genética , ADN , Cloroplastos/genética , Análisis de Secuencia de ADN
2.
Mar Drugs ; 21(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976211

RESUMEN

The heterotrophic Crypthecodinium cohnii is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae. We describe Crypthecodinium croucheri sp. nov. Kwok, Law and Wong, that have different genome sizes, ribotypes, and amplification fragment length polymorphism profiles when compared to the C. cohnii. The interspecific ribotypes were supported by distinctive truncation-insertion at the ITS regions that were conserved at intraspecific level. The long genetic distances between Crypthecodiniaceae and other dinoflagellate orders support the separation of the group, which includes related taxons with high oil content and degenerative thecal plates, to be ratified to the order level. The current study provides the basis for future specific demarcation-differentiation, which is an important facet in food safety, biosecurity, sustainable agriculture feeds, and biotechnology licensing of new oleaginous models.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Filogenia , Ácidos Docosahexaenoicos , Biotecnología , Procesos Heterotróficos
3.
Mar Drugs ; 21(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36827111

RESUMEN

Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL). AV-CTPs provide cellular mechanical protection and are targets of vesicular transport that are replaced during EC-swarmer cell transition, or with increased deposition during the cellular growth cycle. AV-PL exhibits dynamical-replacement with vesicular trafficking that are orchestrated with amphiesmal chlortetracycline-labeled Ca2+ stores signaling, integrating cellular growth with different modes of cell division cycle/progression. We reviewed the dynamics of amphiesma during different cell division cycle modes and life cycle stages, and its multifaceted regulations, focusing on the regulatory and functional readouts, including the coral-zooxanthellae interactions.


Asunto(s)
Dinoflagelados , Animales , Dinoflagelados/metabolismo , Muda , Floraciones de Algas Nocivas , Pared Celular , Ciclo Celular , Estadios del Ciclo de Vida
4.
Environ Microbiol ; 24(12): 5936-5950, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35837869

RESUMEN

Dinoflagellates are important aquatic microbes and major harmful algal bloom (HAB) agents that form invasive species through ship ballast transfer. UV-C installations are recommended for ballast treatments and HAB controls, but there is a lack of knowledge in dinoflagellate responses to UV-C. We report here dose-dependent cell cycle delay and viability loss of dinoflagellate cells irradiated with UV-C, with significant proliferative reduction at 800 Jm-2 doses or higher, but immediate LD50 was in the range of 2400-3200 Jm-2 . At higher dosages, some dinoflagellate cells surprisingly survived after days of recovery incubation, and continued viability loss, with samples exhibiting DNA fragmentations per proliferative resumption. Sequential cell cycle postponements, suggesting DNA damages were repaired over one cell cycle, were revealed with flow cytometric analysis and transcriptomic analysis. Over a sustained level of other DNA damage repair pathways, transcript elevation was observed only for several components of base pair repair and mismatch repair. Cumulatively, our findings demonstrated special DNA damage responses in dinoflagellate cells, which we discussed in relation to their unique chromo-genomic characters, as well as indicating resilience of dinoflagellate cells to UV-C.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Floraciones de Algas Nocivas , Rayos Ultravioleta , Genoma , Daño del ADN
5.
Microorganisms ; 8(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295294

RESUMEN

Dinoflagellates have some of the largest genomes, and their liquid-crystalline chromosomes (LCCs) have high degrees of non-nucleosomal superhelicity with cation-mediated DNA condensation. It is currently unknown if condensins, pentameric protein complexes containing structural maintenance of chromosomes 2/4, commonly involved in eukaryotic chromosomes condensation in preparation for M phase, may be involved in the LCC structure. We find that CcSMC4p (dinoflagellate SMC4 homolog) level peaked at S/G2 phase, even though LCCs do not undergo global-decondensation for replication. Despite the differences in the chromosomal packaging system, heterologous CcSMC4p expression suppressed conditional lethality of the corresponding fission yeast mutant, suggesting conservation of some canonical condensin functions. CcSMC4p-knockdown led to sustained expression of the S-phase marker PCNAp, S-phase impediment, and distorted nuclei in the early stage of CcSMC4p depletion. Prolonged CcSMC4p-knockdown resulted in aneuploidal cells and nuclear swelling with increasing LCC decompaction-decondensation. Cumulatively, our data suggested CcSMC4p function was required for dinoflagellate S-phase progression, and we propose that condensin-mediated higher-order compaction provisioning is involved in the provision of local rigidity for the replisome.

6.
Front Microbiol ; 10: 546, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941114

RESUMEN

Cellulose synthesis (CS) is conducted by membrane-bound cellulose synthase complexes (CSCs), containing cellulose synthases (CesA), that are either arranged in hexagonal structures in higher plants or in linear arrays in most microbial organisms, including dinoflagellates. Dinoflagellates are a major phytoplankton group having linear-type CSCs and internal cellulosic thecal plates (CTPs) in large cortical vesicles. Immunological study suggested CesA1p were cortically localized to the periphery of CTPs. During cyst-to-swarmer transition (TC-S), synchronized peaks of CesA1 transcription, CesA1p expression, CS and CTP formation occurred in respective order, over 12-16 h, strategically allowing the study of CS regulation and CTP biogenesis. CesA1-knockdown resulted in 40% reduction in CesA1p level and time required for swarmer cells reappearance. CTPs were severely malformed with reduced cellulose content. As CTPs are deposited in internal organelle, the present study demonstrated dinoflagellate CesA1 ortholog was adapted for non-surface deposition; this is different to paradigm of other CesAps which require plasmamembrane for cellulose fiber deposition. This pioneer gene-knockdown study demonstrated the requirement of a gene for dinoflagellate cell wall remodeling and proper TC-S, which are prominent in dinoflagellate life-cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA