Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987270

RESUMEN

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Asunto(s)
Aspergillus fumigatus , Calcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Calcio/metabolismo , Quimiocina CXCL1/metabolismo , Animales , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Quimiocinas/metabolismo , Ratones Endogámicos C57BL
2.
Extracell Vesicle ; 32024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38939756

RESUMEN

Extracellular vesicles (EVs) are membrane-bound vesicles released into the extracellular milieu from various cell types including host cells and pathogens that infect them. As carriers of nucleic acids, proteins, lipids, metabolites, and virulence factors, EVs act as delivery vehicles for intercellular communication and quorum sensing. Innate immune cells have the capacity to intercept, internalize, and interpret 'messages' contained within these EVs. This review categorizes the ability of EVs secreted by bacterial, parasitic, and fungal pathogens to trigger both pro- and anti-inflammatory innate immune responses in the host. Understanding molecular pathways and inflammatory responses activated in innate immune cells upon pathogen-derived EV stimulation is critical to gain insight into potential therapeutics and combat these infectious diseases.

3.
Nat Microbiol ; 9(1): 95-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168615

RESUMEN

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNß production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.


Asunto(s)
Candidiasis , Interferón Tipo I , Animales , Ratones , Candida albicans/patogenicidad , Proteínas Adaptadoras de Señalización CARD/metabolismo , Inmunidad Innata , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Candidiasis/metabolismo , Candidiasis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA