Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297304

RESUMEN

Once on Mars, maintenance and repair will be crucial for humans as supply chains including Earth and Mars will be very complex. Consequently, the raw material available on Mars must be processed and used. Factors such as the energy available for material production play just as important a role as the quality of the material that can be produced and the quality of its surface. To develop and technically implement a process chain that meets the challenge of producing spare parts from oxygen-reduced Mars regolith, this paper addresses the issue of low-energy handling. Expected statistically distributed high roughnesses of sintered regolith analogs are approximated in this work by parameter variation in the PBF-LB/M process. For low-energy handling, a dry-adhesive microstructure is used. Investigations are carried out to determine the extent to which the rough surface resulting from the manufacturing process can be smoothed by deep-rolling in such a way that the microstructure adheres and enables samples to be transported. For the investigated AlSi10Mg samples (12 mm × 12 mm × 10 mm), the surface roughness varies in a wide range from Sa 7.7 µm to Sa 64 µm after the additive manufacturing process, and pull-off stresses of up to 6.99 N/cm2 could be realized after deep-rolling. This represents an increase in pull-off stresses by a factor of 392.94 compared to the pull-off stresses before deep-rolling, enabling the handling of even larger specimens. It is noteworthy that specimens with roughness values that were previously difficult to handle can be treated post-deep-rolling, indicating a potential influence of additional variables that describe roughness or ripples and are associated with the adhesion effect of the microstructure of the dry adhesive.

2.
Materials (Basel) ; 15(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233928

RESUMEN

Graphene oxide (GO) is an advanced additive improving the properties of various types of coatings and intensifying the deposition process. In this work, GO is used as an additive to the traditional phosphating solution of the widely used Russian low-carbon steel 08YU (DC04). The anticorrosion properties of the obtained phosphate coatings were investigated in neutral (0.5 M NaCl) and acidified (0.1 M Na2SO4 + 0.02 M H2SO4) aqueous solutions. Increasing the GO concentration in the phosphating solution to 0.3 g/L was found to improve the anticorrosion properties of the phosphate coatings in neutral NaCl solutions. At the same time, in acidified Na2SO4 solutions, the corrosion rate of 08YU steel with phosphate coatings increased as a function of the GO concentration. It is assumed that a possible reason for various corrosive behavior is the influence of the GO plates distributed in the coating on the rate of the oxygen or hydrogen reduction reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA