Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194086

RESUMEN

BACKGROUND: In this study, hard candies were produced by using sucrose, glucose syrup and water. They were cooked at different temperatures, changing from 135 to 145 °C with an interval of 2.5 °C. They were stored at different storage temperatures, which were 25, 4, -18 and -80 °C. Hard candies placed at room temperature were stored for 2 months. In order to understand the crystallization characteristics of the hard candies, time domain (TD) proton nuclear magnetic resonance (1H-NMR) parameters of longitudinal relaxation time (T1) and second moment (M2) measurements were conducted. Moisture contents of the hard candies were determined by Karl-Fischer titration. X-ray diffraction experiments were also conducted as the complementary analysis. RESULTS: Increasing cooking temperature increased the crystallinity and decreased the moisture content of the hard candies significantly (P ≤0.05). Furthermore, storage temperature and storage time had significant effects on the crystallinity of the hard candies (P ≤0.05). The results of T1 and M2 correlated with each other (r > 0.8, P ≤ 0.5) and both produced the highest value at the cooking temperature of 145 °C and storage temperature of 4 °C (P ≤ 0.05). The values of T1 and M2 were obtained as 245.9 ms and 13.0 × 10-8 Hz2, respectively, for the cooking temperature of 145 °C and storage temperature of 4 °C. CONCLUSION: This study demonstrated that the crystallinity of hard candies can be observed and examined by TD-NMR relaxometry, as an alternative to commonly used methods. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Open Res Eur ; 4: 60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946739

RESUMEN

Hard candies are sugar confections comprising mainly water and sucrose. Corn syrup, colorants and flavors are also usually added to hard candy formulations. The production of hard candy requires heating of the ingredients to very high temperatures to reduce moisture content and subsequent cooling to obtain a solid matrix. Cooling of the mixtures achieves the final, well known glassy state of the products. In this glassy state, the system is kinetically stable and molecular mobility is restricted, providing longer shelf life to hard candies. There are, however, several factors affecting the final quality and consumer acceptance of hard candies. Production methods and parameters, initial formulations as well as storage conditions all play a crucial role in the physicochemical, textural and sensory properties of hard candies. Addition of colorants and flavors also plays a vital role in the final quality. Although hard candy production is a simple process with few production stages, even small changes in the method of production and process parameters may induce substantial changes in the final product characteristics. Additionally, storage conditions such as temperature and humidity can change the product properties leading to graining and stickiness which are the two major problems for hard candies during storage. Both production and storage conditions should therefore be carefully chosen and controlled for desirable hard candy properties. This review addresses the general production methods and considers process parameters and quality parameters of hard candy products. Moreover, a comprehensive review of the related hard candy literature is also presented. The majority of hard candy reviews focus on specific methods and processes, but this review will present a more general frame on the subject.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA