Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036492

RESUMEN

A specific series of peptides, called a cell-penetrating peptide (CPP), is known to be free to directly permeate through cell membranes into the cytosol (cytolysis); hence, this CPP would be a potent carrier for a drug delivery system (DDS). Previously, we proposed the mechanism of cytolysis as a temporal and local phase transfer of membrane lipid caused by positive membrane curvature generation. Moreover, we showed how to control the CPP cytolysis. Here, we investigate the phospholipid vesicle's size effect on CPP cytolysis because this is the most straightforward way to control membrane curvature. Contrary to our expectation, we found that the smaller the vesicle diameter (meaning a higher membrane curvature), the more cytolysis was suppressed. Such controversial findings led us to seek the reason for the unexpected results, and we ended up finding out that the mobility of membrane lipids as a liquid crystal is the key to cytolysis. As a result, we could explain the cause of cytolysis suppression by reducing the vesicle size (because of the restriction of lipid mobility); osmotic pressure reduction to enhance positive curvature generation works as long as the membrane is mobile enough to modulate the local structure. Taking all the revealed vital factors and their effects as a tool, we will further explore how to control CPP cytolysis for developing a DDS system combined with appropriate cargo selection to be tagged with CPPs.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Algoritmos , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Fenómenos Químicos , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/ultraestructura , Membrana Dobles de Lípidos/química , Modelos Teóricos , Análisis Espectral
2.
Anal Chim Acta ; 841: 1-9, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25109855

RESUMEN

The highly odorous compound methanethiol, CH3SH, is commonly produced in biodegradation of biomass and industrial processes, and is classed as 2000 times more odorous than NH3. However, there is no simple analytical method for detecting low parts-per-billion in volume ratio (ppbv) levels of CH3SH. In this study, a micro gas analysis system (µGAS) was developed for continuous or near real time measurement of CH3SH at ppbv levels. In addition to a commercial fluorescence detector, a miniature high sensitivity fluorescence detector was developed using a novel micro-photomultiplier tube device. CH3SH was collected by absorption into an alkaline solution in a honeycomb-patterned microchannel scrubber and then mixed with the fluorescent reagent, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). Gaseous CH3SH was measured without serious interference from other sulfur compounds or amines. The limits of detection were 0.2ppbv with the commercial detector and 0.3ppbv with the miniature detector. CH3SH produced from a pulping process was monitored with the µGAS system and the data agreed well with those obtained by collection with a silica gel tube followed by thermal desorption-gas chromatography-mass spectrometry. The portable system with the miniature fluorescence detector was used to monitor CH3SH levels in near-real time in a stockyard and it was shown that the major odor component, CH3SH, presented and its concentration varied dynamically with time.

3.
Environ Sci Technol ; 45(13): 5622-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21671649

RESUMEN

Aqueous sulfide plays an important role in the environment even at low concentrations. However, it is unstable, which means field samples cannot be transported to the laboratory for analysis without fixation. In this work, a novel method was developed to determine trace levels of sulfide on site. This method is based on vapor generation and collection in a special microchannel device followed by fluorescence measurement (VG-µGAS). The microchannel scrubber gave a high enrichment factor, and a high sensitivity was achieved, which allowed measurement of nanomolar (nM) levels of sulfide. The theoretical approach to vapor generation for several compounds is discussed to evaluate the applicability of the method to these analytes, and compounds having a low Henry's law constant (<1 M atm(-1)) are suitable to measure by VG-µGAS. Under optimized conditions, concentrations of 1.0-100 nM of sulfide could be measured. The sulfide contents of hot spring, aquarium, pond, and seawater were successfully measured by this method. Nanomolar levels of sulfide could be measured on site without loss of analyte, and results were obtained instantly in the field, both of which are advantageous for effective field surveys. The method was also applied to field measurements of aqueous sulfide in the Ariake Sea and Lake Baikal.


Asunto(s)
Técnicas de Química Analítica/métodos , Agua Dulce/análisis , Sulfuros/análisis , Contaminantes Químicos del Agua/análisis , Fluorescencia , Federación de Rusia , Sensibilidad y Especificidad , Vapor/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA