Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631699

RESUMEN

Research into the application of nanocarriers in the delivery of cancer-fighting drugs has been a promising research area for decades. On the other hand, their cytotoxic effects on cells, low uptake efficiency, and therapeutic resistance have limited their therapeutic use. However, the urgency of pressing healthcare needs has resulted in the functionalization of nanoparticles' (NPs) physicochemical properties to improve clinical outcomes of new, old, and repurposed drugs. This article reviews recent research on methods for targeting functionalized nanoparticles to the tumor microenvironment (TME). Additionally, the use of relevant engineering techniques for surface functionalization of nanocarriers (liposomes, dendrimers, and mesoporous silica) and their critical roles in overcoming the current limitations in cancer therapy-targeting ligands used for targeted delivery, stimuli strategies, and multifunctional nanoparticles-were all reviewed. The limitations and future perspectives of functionalized nanoparticles were also finally discussed. Using relevant keywords, published scientific literature from all credible sources was retrieved. A quick search of the literature yielded almost 400 publications. The subject matter of this review was addressed adequately using an inclusion/exclusion criterion. The content of this review provides a reasonable basis for further studies to fully exploit the potential of these nanoparticles in cancer therapy.

2.
Nanoscale Res Lett ; 16(1): 167, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837561

RESUMEN

With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.

3.
Colloids Surf B Biointerfaces ; 199: 111523, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360624

RESUMEN

Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.


Asunto(s)
Liposomas , Polietilenglicoles , Línea Celular Tumoral , Tamaño de la Partícula , Vitamina E , Vorinostat
4.
Artículo en Inglés | MEDLINE | ID: mdl-31252255

RESUMEN

In this work, quercetin (Que) molecular imprinted polymer (MIP) material decorated on magnetic graphene oxide (MGO) with high performance was prepared for the first time using a surface-imprinting technique. Magnetic graphene oxide was synthesized using the solvothermal route. Methacrylic acid (MAA) was used as functional monomer, ethylene glycol dimethyl acrylate (EGDMA) as cross-linker; Que. was used as template, for the decoration with MIP. The prepared nanocomposite was examined by different characterization methods including fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM). The adsorption performance was investigated. MGO-MIP was found to have high loading (369 mg g-1) and selective capacity making the nanomaterial more performant than previous similar reported nanomaterials. The determination of Que. was carried out by mean of magnetic solid phase extraction method coupled with high-performance liquid chromatography (HPLC) and the extraction conditions studies were also performed out. Under the optimized conditions, MGO-MIP showed great performance for the extraction, separation and determination of Que. in green tea and serum samples, compared to the flavonoid analogs luteolin (Lut) and rutin (Rut) in the same matrix samples.


Asunto(s)
Grafito/química , Magnetismo/métodos , Quercetina/análisis , Quercetina/aislamiento & purificación , Extracción en Fase Sólida/métodos , Adsorción , Magnetismo/instrumentación , Impresión Molecular , Polímeros/síntesis química , Polímeros/química , Extracción en Fase Sólida/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA