Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Drug Target ; 24(10): 916-926, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27029893

RESUMEN

Emergence of hyperlipidemia in urban population of India and the world at large is very high and accounts to several fatal diseases. This condition is known to manifest elevated levels of lipids and/or lipoproteins. Serious limitations like inadequate solubility, less absorption, less bioavailability, ineffectiveness in lowering of cholesterol levels, patient incompliance and so on are noticed with majority of anti-hyperlipidemic drugs and dosage forms, which are used conventionally. To overcome these shortcomings, building technology platforms for development of appropriate dosage forms is the need of the hour. These efforts are required to maximize patient acceptability while maintaining safety, efficacy, accessibility and affordability. Hyperlipidemia, its types, etiology, pathophysiology and conventional dosage forms are discussed here. The current approaches and novel developments which illustrate controlled drug release and sustained therapeutic effect along with site specific and target oriented drug delivery with better patient compliance are also reviewed critically. Despite the incentives provided by the efforts of formulation scientists, there is still a need for implementation of pharmaceutical technologies that enable to combat limitations of anti-hyperlipidemic drugs and conventional dosage forms associated with it. The present review emphasize on applications of novel drug delivery systems in pharmacotherapy of anti-hyperlipidemic drugs demonstrating the advantages and disadvantages.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/administración & dosificación , Liberación de Fármacos , Humanos , Hiperlipidemias/metabolismo , Hipolipemiantes/efectos adversos , Hipolipemiantes/farmacocinética , Hipolipemiantes/uso terapéutico , Lipoproteínas/metabolismo
2.
J Drug Target ; 23(4): 287-304, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25766078

RESUMEN

Emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB over the past decade presents an unprecedented public health challenge to which countries of concern are responding far too slowly. Global Tuberculosis Report 2014 marks the 20th anniversary of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance, indicating the highest global level of drug-resistance ever recorded detection of 97 000 patients with MDR-TB resulting in 170 000 deaths in 2013. Treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse events. In this context, nanocarrier delivery systems (NDSs) efficiently encapsulating considerable amounts of second-line anti tubercular drugs ((s)ATDs), eliciting controlled, sustained and more profound effect to trounce the need to administer (s)ATDs at high and frequent doses, would assist in improving patient compliance and avoid hepatotoxicity and/or nephrotoxicity/ocular toxicity/ototoxicity associated with the prevalent (s)ATDs. Besides, NDSs are also known to inhibit the P-glycoprotein efflux, reduce metabolism by gut cytochrome P-450 enzymes and circumnavigate the hepatic first-pass effect, facilitating absorption of drugs via intestinal lymphatic pathways. This review first provides a holistic account on MDR-TB and discusses the molecular basis of Mycobacterium tuberculosis resistance to anti-tubercular drugs. It also provides an updated bird's eye view on current treatment strategies and laboratory diagnostic test for MDR-TB. Furthermore, a relatively pithy view on patent studies on second-line chemotherapy using NDSs will be discussed.


Asunto(s)
Antituberculosos/administración & dosificación , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Animales , Antituberculosos/farmacología , Sistemas de Liberación de Medicamentos , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Nanoestructuras , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
3.
J Control Release ; 202: 65-75, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637706

RESUMEN

This review focusses on the current ongoing research in the field of tuberculosis comprising the resistant strains. It specifies a proper data analysis with results in concise form from areas gripping in: diagnostic nanotechnology, vaccine nanotechnology and the prime field of interest i.e., therapeutic nanotechnology. Primarily, therapeutic area recollects the research findings from advanced drug delivery (primary era) to the targeted drug delivery (modern era). The vaccine-based area derives the immune-specific targeting with enhanced emphasis on vaccine extraction and preparation of nanoparticles. Finally, the diagnostic area signifies the imaging techniques that may be employed in the diagnosis of TB. Not only that, there are some researches that emphasized on finding the comparable diagnostic differences between normal and resistant strains. With the advent of carbon nanotubes, metallic NPs, a newer hope has emerged out in diagnostic research, which may extend to therapeutic research applications too. Modifications of natural polymers, least or no use of organic solvents, size controlled NPs, optimized methodology, etc., are fields that need more effort to bypass toxicity. If above desired possibilities get the priority during research, it may lead to shift in the timeline towards much more oriented research.


Asunto(s)
Tuberculosis , Animales , Farmacorresistencia Bacteriana Múltiple , Humanos , Nanotecnología , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis
4.
Int Sch Res Notices ; 2014: 504536, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27379290

RESUMEN

The main aim of the present study was to evaluate the potential of orally disintegrating pellets (ODPs) as an approach for taste masking of bitter drugs, namely, Ambroxol hydrochloride (A-HCl) and Cetirizine dihydrochloride (C-DHCl). Pellets were prepared by extrusion/spheronization with Eudragit EPO, kyron T-134, Kyron T-314, mannitol, sorbitol, MCC (Avicel PH-101), sucralose, chocolate flavor, and 5% xanthum gum. The prepared pellets were characterized for percentage yield, drug content, particle size, in vitro drug release, and in vivo evaluation on humans for taste, mouth feel, and in vivo disintegration time. The results revealed that the average size of pellets was influenced greatly by the percentage of binder and extrusion speed. The optimized ODPs disintegrated in less than 20 s and showed more than 98% of drugs in ODPs dissolved within 15 min. Taste perception study was carried out on human volunteers to evaluate the taste masking ability of ODPs for taste, mouth feel, and in vivo disintegration time. Crystalline state evaluation of drugs in the optimized ODPs was conducted for X-ray powder diffraction. In conclusion, the study confirmed that ODPs can be utilized as an alternative approach for effective taste masking and rapid disintegration in the oral cavity.

5.
J Young Pharm ; 3(4): 275-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22224033

RESUMEN

Acyclovir is an antiviral drug used for the treatment of herpes simplex virus infections, with an oral bioavailability of only 10-20% [limiting absorption in gastrointestinal tract to duodenum and jejunum] and half-life of about 3 h, and is soluble only at acidic pH (pKa 2.27). Mucoadhesive polymeric nanodrug delivery systems of acyclovir have been designed and optimized using 2(3) full factorial design. Poly (lactic-co-glycolic acid) (PLGA) (50:50) was used as the polymer along with polycarbophil (Noveon AA-1) as the mucoadhesive polymer and pluronic F68 as the stabilizer. From the preliminary trials, the constraints for independent variables X(1) (amount of PLGA), X(2) (amount of pluronic F68) and X(3) (amount of polycarbophil) have been fixed. The dependent variables that were selected for study were particle size (Y(1)), % drug entrapment (Y(2)) and % drug release in 12 h (Y(3)). The derived polynomial equations were verified by check point formulation. The application of factorial design gave a statistically systematic approach for the formulation and optimization of nanoparticles with the desired particle size, % drug release and high entrapment efficiency. Drug: Polymer ratio and concentration of stabilizer were found to influence the particle size and entrapment efficiency of acyclovir-loaded PLGA nanoparticles. The release was found to follow Fickian as well as non-Fickian diffusion mechanism with zero-order drug release for all batches. In vitro intestinal mucoadhesion of nanoparticles increased with increasing concentration of polycarbophil. These preliminary results indicate that acyclovir-loaded mucoadhesive PLGA nanoparticles could be effective in sustaining drug release for a prolonged period.

6.
Drug Dev Ind Pharm ; 29(5): 495-503, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12779279

RESUMEN

Transdermal patches of verapamil hydrochloride were prepared using four different polymers (individual and combination): Eudragit RL100 (ERL100), Eudragit RS100 (ERS100), hydroxypropyl methylcellulose 15 cps (HPMC), and ethyl cellulose (EC), of varying degrees of hydrophilicity and hydrophobicity. The effect of the polymers on the technological properties, i.e., drug release, water vapor transmission rate (WVTR), and percentage moisture loss (ML), percentage moisture absorption (MA), folding endurance, and thickness, was investigated. Different formulations were prepared in accordance with the 2(3) factorial design, with ERL100 being the parent polymer. The patch containing ERL100 alone showed maximum WVTR, % MA, and % ML, which could be attributed to its hydrophilic nature. As expected, substitution with ERS100, HPMC, and EC decreased all the above values in accordance with their decreasing degree of hydrophilicity. In vitro release studies showed zero-order release of the drug from all the patches, and the mechanism of release was diffusion mediated. Moreover, the release of the drug was sustained and it extended over a period of 24 hr in all formulations. A12 emerged as the most satisfactory formulation insofar as its technological properties were concerned. Further, release and permeation of the drug from the most satisfactory formulation (A12) was evaluated through different biological barriers (shed snake skin, rabbit skin, and rat skin) to get an idea of the drug permeation through human skin. Shed snake's skin was found to be most permeable (82.56% drug release at 24 hr) and rat skin was least permeable (52.38%). Percutaneous absorption studies were carried out in rabbits. The pharmacokinetic parameters calculated from blood levels of the drug revealed a profile typical of a sustained release formulation, with the ability to maintain adequate plasma levels for 24 hr. [AUC: 3.09 mg/mL hr, Cmax: 203.95 microg/mL, Tmax: 8 hr]. It can therefore be concluded that the patch containing ERL100 and HPMC in the ratio 8:2 has achieved the objectives of transdermal drug delivery system, such as avoidance of first pass effect, extended release, and reduced frequency of administration.


Asunto(s)
Membranas Artificiales , Piel/metabolismo , Verapamilo/administración & dosificación , Administración Cutánea , Animales , Transporte Biológico , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Técnicas In Vitro , Permeabilidad , Conejos , Ratas , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Verapamilo/sangre , Verapamilo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA