Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Gastroenterol ; 52(5): 611-622, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27599972

RESUMEN

BACKGROUND: Acetaminophen (APAP) overdose induces severe oxidative stress followed by hepatocyte apoptosis/necrosis. Previous studies have indicated that endoplasmic reticulum (ER) stress is involved in the cell death process. Therefore, we investigated the effect of the chemical chaperone 4-phenyl butyric acid (PBA) on APAP-induced liver injury in mice. METHODS: Eight-week-old male C57Bl6/J mice were given a single intraperitoneal (i.p.) injection of APAP (450 mg/kg body weight), following which some were repeatedly injected with PBA (120 mg/kg body weight, i.p.) every 3 h starting at 0.5 h after the APAP challenge. All mice were then serially euthanized up to 12 h later. RESULTS: PBA treatment dramatically ameliorated the massive hepatocyte apoptosis/necrosis that was observed 6 h after APAP administration. PBA also significantly prevented the APAP-induced increases in cleaved activating transcription factor 6 and phosphorylation of c-Jun N-terminal protein kinase and significantly blunted the increases in mRNA levels for binding immunoglobulin protein, spliced X-box binding protein-1, and C/EBP homologous protein. Moreover, PBA significantly prevented APAP-induced Bax translocation to the mitochondria, and the expression of heme oxygenase-1 mRNA and 4-hydroxynonenal. By contrast, PBA did not affect hepatic glutathione depletion following APAP administration, reflecting APAP metabolism. CONCLUSIONS: PBA prevents APAP-induced liver injury even when an APAP challenge precedes its administration. The underlying mechanism of action most likely involves the prevention of ER stress-induced apoptosis/necrosis in the hepatocytes during APAP intoxication.


Asunto(s)
Acetaminofén/envenenamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fenilbutiratos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Evaluación Preclínica de Medicamentos/métodos , Sobredosis de Droga/complicaciones , Sobredosis de Droga/tratamiento farmacológico , Sobredosis de Droga/metabolismo , Sobredosis de Droga/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Necrosis/inducido químicamente , Necrosis/metabolismo , Necrosis/patología , Necrosis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Fenilbutiratos/farmacología , Transaminasas/sangre , Proteína X Asociada a bcl-2/metabolismo
2.
Hepatol Res ; 47(3): E44-E54, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27062266

RESUMEN

AIM: Pharmacological treatment for metabolic syndrome-related non-alcoholic steatohepatitis has not been established. We investigated the effect of L-carnitine, an essential substance for ß-oxidation, on metabolic steatohepatitis in mice. METHODS: Male KK-Ay mice were fed a high-fat diet (HFD) for 8 weeks, with supplementation of L-carnitine (1.25 mg/mL) in drinking water for the latter 4 weeks. RESULTS: Serum total carnitine levels were decreased following HFD feeding, whereas the levels were reversed almost completely by L-carnitine supplementation. In mice given L-carnitine, exacerbation of hepatic steatosis and hepatocyte apoptosis was markedly prevented even though HFD feeding was continued. Body weight gain, as well as hyperlipidemia, hyperglycemia, and hyperinsulinemia, following HFD feeding were also significantly prevented in mice given L-carnitine. High-fat diet feeding elevated hepatic expression levels of carnitine palmitoyltransferase 1A mRNA; however, production of ß-hydroxybutyrate in the liver was not affected by HFD alone. In contrast, L-carnitine treatment significantly increased hepatic ß-hydroxybutyrate contents in HFD-fed mice. L-carnitine also blunted HFD induction in sterol regulatory element binding protein-1c mRNA in the liver. Furthermore, L-carnitine inhibited HFD-induced serine phosphorylation of insulin receptor substrate-1 in the liver. L-carnitine decreased hepatic free fatty acid content in 1 week, with morphological improvement of swollen mitochondria in hepatocytes, and increases in hepatic adenosine 5'-triphosphate content. CONCLUSIONS: L-carnitine ameliorates steatohepatitis in KK-Ay mice fed an HFD, most likely through facilitating mitochondrial ß-oxidation, normalizing insulin signals, and inhibiting de novo lipogenesis in the liver. It is therefore postulated that supplementation of L-carnitine is a promising approach for prevention and treatment of metabolic syndrome-related non-alcoholic steatohepatitis.

3.
J Clin Biochem Nutr ; 57(3): 183-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26566303

RESUMEN

Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA