Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049073

RESUMEN

This paper presents the results of a study on the development of a Metal active gas (MAG) welding technology for an industrial furnace component made of steel S235JRC+N with respect to the minimizationof welding deformation. A numerical simulation of the welding process was performed in the first phase of the research. The numerical simulation was carried out with the SYSWELD software. For the numerical simulation of the welding process, the FEM method was used. In the simulation, four variants of restraint of the industrial furnace wall panel elements during the execution of the welding process were investigated. They differed in the number of restraints (model 1-4). It was found that the difference between the maximum mean strain in model 1 and the lowest mean strain in model 4 was only 11%. A physical simulation of the welding process was then performed with a restraint variant according to model 1. The displacement results obtained from the physical simulation of the welding process were compared with the displacement results from the numerical simulation. Discrepancies between numerical and physical simulation displacement values were found. The quality of selected welded joints was also evaluated. Visual testing (VT) and measurements of weld geometries were performed for this purpose. Metallographic tests and hardness measurements were performed to determine of influence of the welding process on the microstructure of the welded joint area, especially the heat affected zone (HAZ). The results obtained confirm the correctness of the assumptions made regarding the technology of manufacturing the furnace wall panels.

2.
Materials (Basel) ; 15(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36013892

RESUMEN

This paper presents the results of tests on the fabrication of welded joints in S1300QL steel according to the requirements of ISO 15614-14 and ISO 12932. The butt-welded joint without bevel was made from 350 × 150 × 8 mm sheets. The welding process was carried out at the hybrid welding (laser-MAG) station. MAG means metal active gas. The test welded joints were subjected to non-destructive and destructive testing. Visual and radiographic examinations were carried out. The distribution of HV10 hardness was determined in the weld, the heat-affected zone, and the base material. The microstructure of these areas was also analysed for the presence of hard and brittle hardening products and non-metallic inclusions. Tensile strength and yield strength, as well as bending strength, were assessed in the mechanical property tests. The impact test was performed in accordance with ISO 9016.

3.
Materials (Basel) ; 15(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36013895

RESUMEN

This paper presents the results of structural tests and hardness measurements of rebuilding coatings manually applied by the gas tungsten arc welding (GTAW) method on damaged surfaces of steel shafts of turbochargers of automotive engines. Single- and double-layer coatings were applied in an argon atmosphere by fusing a 1.2 mm diameter wire with a Fluxofil M58 flux core, using a current of 35A and an arc voltage of 8-9 V. The hardfacing resulted in coatings with a martensitic-bainitic structure with fine dispersed carbides rich in M23C6-type chromium. The hardness of the coatings on the rebuilt shafts averaged from about 740HV5 for the single-layer coating to about 770HV5 for the double-layer coating and was two times higher than the hardness of the tempered shafts without coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA