Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 46(1): 143-152, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28177416

RESUMEN

The mobility of water-dispersible colloids (WDCs) in soil may be influenced by soil management practices such as organic soil amendments. Biochar has recently been promoted as a useful soil amendment, and extensive research has been devoted to investigating its effects on soil macroscopic properties and functions. However, there is limited understanding of the effects of biochar application on micro-scale particle dynamics. We conducted a field study to investigate the effects of the application of birch ( spp.) wood biochar on colloid dispersibility with respect to application rate, history, and physicochemical soil properties. Undisturbed soil cores (100 cm) were collected from the topsoil of two agricultural sites in Denmark with soils of sandy loam texture. The two sites received biochar at different application rates (0-100 Mg ha) and were sampled 7 to 19 mo later. The WDC content was determined using an end-over-end shaking method on 100-cm intact soil cores, and the colloid solution was analyzed for electrical conductivity, pH, and zeta potential. The WDC content increased with biochar application rate because of biochar-induced changes in soil chemistry and was strongly and positively correlated with the concentration of exchangeable monovalent cations in the soils. Biochar application increased pH and decreased electrical conductivity and zeta potential in the colloid suspension more in the short term (7 mo) than in the long term (19 mo). Thus, there is potential for biochar to induce short-term changes in soil solution chemistry in agricultural soils, which may influence the mobility of soil colloids.


Asunto(s)
Carbón Orgánico , Coloides , Suelo/química , Agricultura
2.
J Environ Qual ; 43(2): 647-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25602666

RESUMEN

Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA