Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(29): 31373-31383, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39072137

RESUMEN

Cell surface display engineering facilitated the development of a cobalt-binding hybrid Escherichia coli. OmpC served as the molecular anchor for showcasing the cobalt-binding peptides (CBPs), creating the structural model of the hybrid OmpC-CBPs (OmpC-CP, OmpC-CF). Subsequently, the recombinant peptide's cobalt adsorption and retrieval effectiveness were evaluated at various concentrations. When subjected to a pH of 7 and a concentration of 2 mM, OmpC-CF exhibited a significantly higher cobalt recovery rate (2183.87 mol/g DCW) than OmpC-CP. The strain with bioadsorbed cobalt underwent thermal treatment at varying temperatures (400 °C, 500 °C, 600 °C, and 700 °C) and morphological characterization of the thermally decomposed cobalt nanoparticle oxides using diverse spectroscopy techniques. The analysis showed that nanoparticles confined themselves to metal ions, and EDS mapping detected the presence of cobalt on the cell surface. Finally, the nanoparticles' anticancer potential was assessed by subjecting them to heating at 500 °C in a furnace; they demonstrated noteworthy cytotoxicity, as evidenced by IC50 values of 59 µg/mL. These findings suggest that these nanoparticles hold promise as potential anticancer agents. Overall, this study successfully engineered a recombinant E. coli capable of efficiently binding to cobalt, producing nanoparticles with anticancer properties. The results of this investigation could have significant implications for advancing novel cancer therapies.

2.
Bioresour Technol ; 403: 130796, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703957

RESUMEN

The novel recombinant Escherichia coli strain was construct through cell surface display for the treatment of cobalt contaminated wastewater and dye contaminated wastewater. First, structural analysis of known cobalt binding peptide was conducted and core binding sites were figured out which showing better cobalt binding ability. The cobalt peptides were attached to OmpC to construct cobalt adsorbing recombinant Escherichia coli. The recombinant strain efficiently absorbed and retrieved cobalt from cobalt wastewater by adsorbing 1895 µmol/g DCW of cobalt. Following adsorption, cobalt nanoparticles were synthesized through thermal decomposition of cobalt adsorbed recombinant strain at 500˚C. The nanoparticles exhibited noteworthy photocatalytic properties, demonstrating a substantial capacity for degrading dyes when used as a catalyst at a concentration of 10 mg/dl. These results presenting potential solutions for effective and environmentally friendly approaches to address cobalt and dye contaminated wastewater treatment process.


Asunto(s)
Cobalto , Colorantes , Escherichia coli , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Cobalto/química , Aguas Residuales/química , Escherichia coli/metabolismo , Colorantes/metabolismo , Colorantes/química , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Adsorción , Catálisis , Biodegradación Ambiental
3.
Bioengineering (Basel) ; 10(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38135980

RESUMEN

A novel Escherichia coli strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated. The modified cells were subjected to cobalt concentrations (0.25 mM to 1 mM) and pH levels (pH 3, 5, 7, and 9). When exposed to a pH of 7 and a cobalt concentration of 1 mM, the pBAD30-CP1 strain had the best cobalt recovery efficiency, measuring 1468 mol/g DCW (Dry Cell Weight). Furthermore, pBAD30-CP1 had a higher affinity for cobalt than nickel and manganese. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Energy-Dispersive X-ray Spectroscopy (EDS) were used to examine the physiochemical parameters of the recombinant cells after cobalt adsorption. These approaches revealed the presence of cobalt in a bound state on the cell surface in the form of nanoparticles. In addition, the cobalt-binding recombinant strains were used in the photocatalytic reduction of methylene blue, which resulted in a 59.52% drop in the observed percentage. This study shows that modified E. coli strains have the potential for efficient cobalt recovery and application in environmental remediation operations.

4.
J Ind Microbiol Biotechnol ; 48(7-8)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34180519

RESUMEN

We investigated the effect of cell-surface display of glutamate decarboxylase (GadB) on gamma-aminobutyric acid (GABA) production in recombinant Escherichia coli. We integrated GadB from the hyperthermophilic, anaerobic archaeon Pyrococcus horikoshii to the C-terminus of the E. coli outer membrane protein C (OmpC). After 12 hr of culturing GadB-displaying cells, the GABA concentration in the extracellular medium increased to 3.2 g/l, which is eight times that obtained with cells expressing GadB in the cytosol. To further enhance GABA production, we increased the temperatures of the culture. At 60°C, the obtained GABA concentration was 4.62 g/l after 12 hr of culture, and 5.35 g/l after 24 hr, which corresponds to a yield of 87.7%.


Asunto(s)
Proteínas de Escherichia coli , Pyrococcus horikoshii , Escherichia coli/genética , Glutamato Descarboxilasa/genética , Ácido gamma-Aminobutírico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA