Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2023: 5113417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854640

RESUMEN

Computing intelligence is built on several learning and optimization techniques. Incorporating cutting-edge learning techniques to balance the interaction between exploitation and exploration is therefore an inspiring field, especially when it is combined with IoT. The reinforcement learning techniques created in recent years have largely focused on incorporating deep learning technology to improve the generalization skills of the algorithm while ignoring the issue of detecting and taking full advantage of the dilemma. To increase the effectiveness of exploration, a deep reinforcement algorithm based on computational intelligence is proposed in this study, using intelligent sensors and the Bayesian approach. In addition, the technique for computing the posterior distribution of parameters in Bayesian linear regression is expanded to nonlinear models such as artificial neural networks. The Bayesian Bootstrap Deep Q-Network (BBDQN) algorithm is created by combining the bootstrapped DQN with the recommended computing technique. Finally, tests in two scenarios demonstrate that, when faced with severe exploration problems, BBDQN outperforms DQN and bootstrapped DQN in terms of exploration efficiency.


Asunto(s)
Algoritmos , Inteligencia Artificial , Teorema de Bayes , Modelos Estadísticos , Redes Neurales de la Computación
2.
Comput Intell Neurosci ; 2022: 8755922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498179

RESUMEN

In researching social network data and depression, it is often necessary to manually label depressed and non-depressed users, which is time-consuming and labor-intensive. The aim of this study is that it explores the relationship between social network data and depression. It can also contribute to detecting and identifying depression. Through collecting and analyzing college students' microblog social data, a preliminary screening algorithm for college students' suspected depression microblogs based on depression keywords, and semantic expansion is researched; a comprehensive lexical grammar was proposed. This research provided has a preliminary screening method based on depression keywords and semantic expansion for college students' suspected depression microblogs, with a screening accuracy. This method forms a depression keyword table by constructing the basic keyword table and the semantic expansion based on the word embedding learning model Word2Vec. Finally, the word table is used to calculate the semantic similarity of the tested microblogs and then identify whether it is a suspected depression microblog. The experimental results on the microblog dataset of college students show that the comprehensive lexical method is better than the SDS questionnaire segmentation method and the expert lexical method in terms of screening accuracy; the comprehensive lexical approach can quickly and automatically screen out a tiny proportion of suspected doubts from a large number of college students' microblogs. Depression Weibo can reduce the workload of experts' annotation, improve annotation efficiency, and provide a suitable data processing basis for the subsequent accurate identification (classification problem) of patients with depression.


Asunto(s)
Medios de Comunicación Sociales , Emociones , Humanos , Lingüística , Semántica , Estudiantes
3.
Biomed Res Int ; 2022: 5214195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463968

RESUMEN

Patients suffering from severe depression may be precisely assessed using online EEG categorization and their progress tracked over time, minimizing the risk of danger and suicide. Online EEG categorization systems, on the other hand, suffer additional challenges in the absence of empirical oversight. A lack of effective decoupling between brain regions and neural networks occurs during brain disease attacks, resulting in EEG data with poor signal intensity, high noise, and nonstationary characteristics. CNN employs momentum SGD optimization. By using a tiny momentum decay factor, the literature's starting strategy, and the same batch normalization, this work attempts to decrease model error. Before being utilized to form a training set, samples are shuffled, followed by validation and testing on the new samples in the set. An online EEG categorization system driven by a convolution neural network has been developed to do this. The approach is applied directly to the EEG input and is able to accurately and quickly identify depressed states without the need for preprocessing or feature extraction. The healthy control group and the depression control group had accuracy, sensitivity, and specificity of 99.08 percent, 98.77 percent, and 99.42 percent, respectively, in experiments on depression evaluation based on publicly accessible data. The machine learning technique based on feature extraction is often getting more and more complex, making it only suited for offline EEG categorization. While neural networks have become increasingly important in the study of artificial intelligence in recent years, they are still essentially black-box function approximations with limited interpretability. In addition, quantitative study of the neural network shows that depressed patients and healthy persons have remarkable dissimilarity between the right and left temporal lobe brain regions.


Asunto(s)
Biología Computacional , Electroencefalografía , Algoritmos , Inteligencia Artificial , Encéfalo , Electroencefalografía/métodos , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA