Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(58): 121370-121392, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996596

RESUMEN

Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.


Asunto(s)
Monitoreo del Ambiente , Rayos Ultravioleta , Femenino , Humanos , Medición de Riesgo , Bioacumulación
2.
Sci Total Environ ; 882: 163381, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030358

RESUMEN

Occurrence of benzotriazole ultraviolet stabilizers (BUVs) in different environmental matrices has attracted researchers and regulatory agencies worldwide due to its persistency, bioaccumulative and toxic properties. Environmental occurrence of BUVs in Indian freshwater is lacking. The present study analyzed six targeted BUVs in surface water and sediments of three rivers of Central India. BUVs were determined in pre- and post-monsoon seasons to reveal their concentration, spatio-temporal distribution and probable ecological risks. Results indicated that total concentration of BUVs (Æ©BUVs) ranged from ND to 42.88 µg/L in water, and ND to 165.26 ng/g in sediments with UV-329 as the predominant BUV in surface water and sediments during pre- and post-monsoon seasons. Surface water samples from Pili River, and sediment of Nag River accounted for maximum BUVs concentration. Partitioning coefficient results confirmed the effective transfer of BUVs from overlaying water to sediments. The observed concentration of BUVs in water and sediments posed low ecological risk to planktons. Untreated municipal discharges and poor waste management practices including dumping of wastes might be the sources of BUVs in water bodies.

3.
Int J Environ Health Res ; : 1-17, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242556

RESUMEN

Synthetic polymers with additives are used in the manufacturing of face masks (FMs); hence, FMs could be a potential source of exposure to phthalic acid esters (PAEs). India stands second in the world in terms of the FMs usage since the beginning of Covid-19 pandemic. However, little is known about the PAEs content of FMs used in India. Some PAEs, such as DEHP and DBP are suspected endocrine disrupting chemicals (EDCs); hence, wearing FM may increase the risk of exposure to these EDCs. In this study, we collected 91 samples of FMs from eight Indian cities and analyzed for five PAEs viz. DMP, DEP, DBP, BBP, and DEHP. The PAEs contents in FMs ranged from 101.79 to 27,948.64 ng/g. The carcinogenic risk of N 95 with filter, N-95, and cloth masks was higher than the threshold levels. The findings indicate the need to control PAEs in FMs through regulatory actions.

4.
Environ Sci Pollut Res Int ; 29(33): 49490-49512, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35589887

RESUMEN

Microplastics (MPs) have been defined as particles of size < 5 mm and are characterized by hydrophobicity and large surface areas. MPs interact with co-occurring hydrophobic organic contaminants (HOCs) via sorption-desorption processes in aquatic and terrestrial environments. Ingestion of MPs by living organisms may increase exposure to HOC levels. The key mechanisms for the sorption of HOCs onto MPs are hydrophobic interaction, electrostatic interaction, π-π interactions, hydrogen bonding, and Van der Waals forces (vdW). Polymer type, UV-light-induced surface modifications, and the formation of oxygen-containing functional groups have a greater influence on electrostatic and hydrogen bonding interactions. In contrast, the formation of oxygen-containing functional groups negatively influences hydrophobic interaction. MP characteristics such as crystallinity, weathering, and surface morphology affect sorption capacity. Matrix properties such as pH, ionic strength, and dissolved organic matter (DOM) also influence sorption capacity by exerting synergistic/antagonistic effects. We reviewed the mechanisms of HOC sorption onto MPs and the polymer and matrix properties that influence the HOC sorption. Knowledge gaps and future research directions are outlined.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Oxígeno , Plásticos/química , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 29(10): 14830-14845, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34622401

RESUMEN

The COVID-19 pandemic has resulted in the massive generation of biomedical waste (BMW) and plastic waste (PW). This sudden spike in BMW and PW has created challenges to the existing waste management infrastructure, especially in developing countries. Safe disposal of PW and BMW is essential; otherwise, this virus will lead to a waste pandemic. This paper reviews the generation of BMW and PW before and during the COVID-19 pandemic, the regulatory framework for BMW management, policy interventions for COVID-19-based BMW (C-BMW), the capacity of BMW treatment and disposal facilities to cope with the challenges, possible management strategies, and perspectives in the Indian context. This study indicated that policy intervention helped minimize the general waste treated as C-BMW, especially during the second pandemic. Inadequacy of common BMW treatment facilities' (CBMWTFs) capacity to cope with the BMW daily generation was observed in some states resulting in compromised treatment conditions. Suggestions for better management of BMW and PW include decontamination of used personal protective equipment (PPEs) and recycling, alternate materials for PPEs, segregation strategies, and use of BMW for co-processing in cement kilns. All upcoming CBMWTFs should be equipped with higher capacity and efficient incinerators for the sound management of BMW. Post-pandemic monitoring of environmental compartments is imperative to assess the possible impacts of pandemic waste.


Asunto(s)
COVID-19 , Residuos Sanitarios , Administración de Residuos , Humanos , Incineración , Pandemias/prevención & control
6.
Environ Monit Assess ; 176(1-4): 647-62, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20661772

RESUMEN

Chromium species (Cr(III), Cr(VI), and Cr(III)-organic) in groundwater of a tannery contaminated area were monitored during pre- and post-monsoon seasons for a period of 3 years (May 2004 to January 2007). The objectives of the study were (1) to investigate the temporal variation of chromium species and other matrix constituents and (2) to study the redox processes associated with the temporal variation of chromium species. Samples were collected from 15 dug wells and analyzed for chromium species and other constituents. The results showed that the groundwater was relatively more oxidizing during post-monsoon periods than the pre-monsoon periods. Except one sample, the concentration of chromium species were found in the order of Cr(VI)>Cr(III)>Cr(III)-organic complexes during all the pre- and post-monsoon periods. In most of the wells, the concentrations of Cr(III), Cr(VI), and Cr(III)-organic decreased during post-monsoon periods compared to their pre-monsoon concentrations. However, the Cr(VI)/Cr(Total) ratio still increased and the Cr(III)/Cr(Total) ratio decreased during post-monsoon periods in most of the samples. The possible mechanisms for the temporal variation of chromium species were (1) Fe(II) reduction of Cr(VI) vs oxidation of Fe(II) by dissolved oxygen and (2) oxidation of Cr(III) by Mn(IV).


Asunto(s)
Cromo/análisis , Cromo/clasificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/clasificación , Abastecimiento de Agua/análisis , Monitoreo del Ambiente , Geografía , India , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA