Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mycopathologia ; 184(5): 559-572, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31473909

RESUMEN

BACKGROUND: Candida albicans is an opportunistic fungal pathogen which causes systemic infections in human. In this study, C. albicans infection model was developed in zebrafish to understand the host-pathogen interactions for straightforward anticandidal drug screening. METHODS: To develop the infection, 1 × 106 cells of C. albicans suspended in phosphate-buffered saline were deposited in zebrafish dorsal muscle by manually operated syringe. The infection progression was externally assessed by a scale of wound-healing events, based on visible changes of yeast deposited in the muscle tissues. Chemotherapy was carried out with known antifungal drugs (fluconazole, nystatin, and amphotericin B) and a potential antifungal agent, chitosan silver nanocomposites (CAgNC), after the infection as direct exposure in the water. Histopathological analysis was performed to identify the pathogen virulence and the host-pathogen interaction during the infection. RESULTS: The light microscopic observations and histopathological analysis revealed the yeast-hyphae transition at the site of infection (at 72 hpi) and progression of the infection in the host tissues. The larval survival rate under fluconazole (up to 80 µg mL-1) and nystatin (up to 20 µg mL-1) was > 90% and for CAgNC it was 40% at 36 h post-exposure (hpe). The infection progression was suppressed with the fungicidal treatments. Among inflammatory genes, il-1ß has been highly upregulated (14.68-fold) at 24 h post infection (hpi). Both il-1ß and tnf-α were moderately upregulated in infected fish gills at 72 hpi. Among the C. albicans antioxidant genes, cat1 and sod2 have been upregulated during the infection, and relative expression folds were increased from low to moderate levels with the time. DISCUSSION: We demonstrate the approach for the development of artificial infection model of zebrafish with C. albicans. By this mini vertebrate zebrafish model, researchers will be able to study novel anticandidal compounds in vivo with respect to the host, pathogen, and their interactions.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/microbiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Animales , Candida albicans/patogenicidad , Candidiasis/patología , Histocitoquímica , Interacciones Huésped-Patógeno , Microscopía , Pez Cebra
2.
Fish Shellfish Immunol ; 84: 1030-1040, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30359749

RESUMEN

Proteins with dithiol-disulfide oxidoreductase catalytic domain are well known for their capacity in the cellular redox homeostasis. In this study, we characterized the zebrafish thioredoxin domain containing 12 (Zftxndc12) gene, analyzed the transcriptional responses and studied the functional properties of its recombinant protein. Full-length cDNA of Zftxndc12 consists 519 bp coding region encoding 172 amino acids (AA) including the signal peptide. Highly consensus active motif (65WCGAC69) and probable ER retrieval motif (169GDEL172) were identified. Ubiquitous expression of Zftxndc12 mRNA was observed from one cell to juvenile stage as well as different organs of adult zebrafish. Moreover, whole mount in situ hybridization (WISH) results showed a higher expression of Zftxndc12 in primordial gills, central nerves system and eye. The tissue specific expression analysis (by qRT-PCR) also showed the highest expression in gills followed by brain in adult zebrafish. In larvae, up-regulated Zftxndc12 mRNA expression upon exposure to H2O2,Edwardsiella tarda and Saprolegnia parasitica suggests that it may involve in both stress and immune responses. Moreover, transcriptional expression of Zftxndc12 was up-regulated upon Streptococcus iniae challenge in gills of adult zebrafish. The recombinant ZfTxndc12 (rZfTxndc12) was overexpressed, purified and tested for its biological activities. Results revealed that rZfTxndc12 is able to reduce the DNA damage and detoxify the H2O2 toxicity in concentration dependent manner. Overall results suggest that Zftxndc12 is important antioxidant and immune functional member of the host defense system in zebrafish.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Pez Cebra/genética , Pez Cebra/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Perfilación de la Expresión Génica/veterinaria , Infecciones/inmunología , Infecciones/veterinaria , Filogenia , Saprolegnia/fisiología , Alineación de Secuencia/veterinaria , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/veterinaria , Streptococcus iniae/fisiología
3.
Indian J Microbiol ; 57(4): 427-437, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29151644

RESUMEN

ABSTRACT: Development of nanostructured films using natural polymers and metals has become a considerable interest in various biomedical applications. Objective of the present study was to develop silver nano particles (AgNPs) embedded chitosan films with antimicrobial properties. Based on the Ag content, two types of chitosan silver nano films, named as CAgNfs-12 (12 mM) and CAgNfs-52 (52 mM) were prepared and characterized. Field emission scanning electron microscope (FE-SEM) images of two CAgNfs showed the circular AgNPs, which were uniformly embedded and distributed in the matrix of chitosan films. Antimicrobial experiment results clearly indicated that CAgNfs can inhibit the growth of fish pathogenic bacteria Vibrio (Allivibrio) salmonicida, V. tapetis, Edwardsiella tarda and fungi Fusarium oxysporum. Moreover, CAgNfs significantly reduced the experimentally exposed V. salmonicida levels in artificial seawater, suggesting that these CAgNfs could be used to develop antimicrobial filters/membranes for water purifying units to eliminate the pathogenic microbes.

4.
J Fish Dis ; 40(4): 485-494, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451953

RESUMEN

Fusarium oxysporum species complex (FOSC) is a highly diverse fungus. Recently, F. oxysporum infection was identified from zebrafish (Danio rerio) culturing system in Korea. Initially, a rapid whitish smudge was appeared in the water with the fungal blooming on walls of fish tanks. Microscopic studies were conducted on fungal hyphae, colony pigmentation and chlamydospore formation and the presence of macro- and microspores confirmed that the isolated fungus as F. oxysporum. Furthermore, isolated F. oxysporum was confirmed by internal transcribed spacer sequencing which matched (100%) to nine F. oxysporum sequences available in GenBank. Experimental hypodermic injection of F. oxysporum into adult zebrafish showed the development of fungal mycelium and pathogenicity similar to signs observed. Histopathologic results revealed a presence of F. oxysporum hyphae in zebrafish muscle. Fusarium oxysporum growth was increased with sea salt in a concentration-dependent manner. Antifungal susceptibility results revealed that F. oxysporum is resistant to copper sulphate (up to 200 µg mL-1 ) and sensitive to nystatin (up to 40 µg mL-1 ). This is the first report of FOSC from zebrafish culture system, suggesting it appears as an emerging pathogen, thus posing a significant risk on zebrafish facilities in the world.


Asunto(s)
Enfermedades de los Peces/microbiología , Fusariosis/veterinaria , Fusarium/fisiología , Pez Cebra , Animales , ADN Intergénico/genética , Enfermedades de los Peces/prevención & control , Fusariosis/microbiología , Fusariosis/prevención & control , Fusarium/clasificación , Fusarium/genética , Fusarium/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN/veterinaria
5.
Mycobiology ; 45(4): 297-311, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29371797

RESUMEN

Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1ß, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8+ and CD4+) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 µg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA