Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plants (Basel) ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204671

RESUMEN

Vegetative desiccation tolerance has evolved within the genera Craterostigma and Lindernia. A centre of endemism and diversification for these plants appears to occur in ancient tropical montane rainforests of east Africa in Kenya and Tanzania. Lindernia subracemosa, a desiccation-sensitive relative of Craterostigma plantagineum, occurs in these rainforests and experiences adequate rainfall and thus does not require desiccation tolerance. However, sharing this inselberg habitat, another species, Lindernia brevidens, does retain vegetative desiccation tolerance and is also related to the resurrection plant C. plantagineum found in South Africa. Leaf material was collected from all three species at different stages of hydration: fully hydrated (ca. 90% relative water content), half-dry (ca. 45% relative water content) and fully desiccated (ca. 5% relative water content). Cell wall monosaccharide datasets were collected from all three species. Comprehensive microarray polymer profiling (CoMPP) was performed using ca. 27 plant cell-wall-specific antibodies and carbohydrate-binding module probes. Some differences in pectin, xyloglucan and extension epitopes were observed between the selected species. Overall, cell wall compositions were similar, suggesting that wall modifications in response to vegetative desiccation involve subtle cell wall remodelling that is not reflected by the compositional analysis and that the plants and their walls are constitutively protected against desiccation.

2.
Food Chem ; 385: 132645, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278728

RESUMEN

Pectolytic enzyme maceration is common for producing red wines, but the effects on bitterness and astringency are not well understood. Glycan microarrays assessed polysaccharide diversity and with polyphenol analysis was correlated with sensory data on descriptors of astringency and their perceived levels in enzyme-crafted Cabernet Sauvignon wines. Enzyme use is shown to have no effect on bitterness, but enzyme-macerated wines are more astringent. The data suggests that pectolytic enzymes are much more pronounced in their effect on the cell wall matrix than the ripeness of the berries at harvest and subsequent sensory perception. Enzyme-macerated red wines showed higher levels of polyphenol which were more polymerized and galloylated. The polyphenol-rich wines were described as hard, chalky, grippy, grainy and dry. The non-enzyme wines had elevated levels of arabinogalactan protein and pectin epitopes (notably biomarker mAbs JIM8 and JIM13) with the wines being characterized as soft, fine and velvety.


Asunto(s)
Vitis , Vino , Astringentes/análisis , Pared Celular/química , Frutas/química , Polifenoles/análisis , Polisacáridos/análisis , Vino/análisis
3.
Food Res Int ; 150(Pt A): 110697, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865745

RESUMEN

Phenolic composition of young red wines has been shown to play an important role in their ageing potential. Therefore, the modulation of phenolic extraction during maceration may influence the subsequent phenolic evolution of these wines. The present work aimed to evaluate the impact of three different maceration times on the phenolic levels and evolution observed over time, using spectrophotometric and chromatography methods, and the effect on the aroma, taste, and mouthfeel sensory properties using Projective Mapping. Additionally, grape cell wall deconstruction was monitored during the extended maceration phase by GC-MS and Comprehensive Comprehensive Microarray Polymer Profiling (CoMPP). Our findings demonstrated that longer maceration times did not always correspond to an increase in wine phenolic concentration, although the level of complexity of these molecules seemed to be higher. Additionally, continuous depectination and possible solubilisation of the pectin is observed during the extended maceration which may be influencing the sensory perception of these wines. Maceration time was also shown to influence the evolution of the polymeric fraction and sensory perception of the wines.


Asunto(s)
Vitis , Vino , Bebidas Alcohólicas , Odorantes/análisis , Gusto , Vino/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA