Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(6): e1010236, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737725

RESUMEN

Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant's effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes.


Asunto(s)
Exoma , Cardiopatías Congénitas , Proteínas Morfogenéticas Óseas/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Frecuencia de los Genes , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Humanos , Recién Nacido , Linaje , Factores de Transcripción/genética , Secuenciación del Exoma , Quinasas Asociadas a rho/genética
2.
Gigascience ; 10(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33822938

RESUMEN

BACKGROUND: The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet evidence suggests that this class of "silent" genetic variation plays multiple regulatory roles in both transcription and translation. One mechanism by which synonymous codons direct and modulate the translational process is through alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how synonymous variants might disrupt mRNA structure are lacking. RESULTS: We developed novel software using a parallel processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469 million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of incidence in the human population. CONCLUSIONS: These findings support the hypothesis that synonymous variants may play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human transcriptome and introduce a "Structural Predictivity Index" (SPI) to quantify structural constraint operating on any synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single measurement to predict the impact of secondary structure altering variants in human genetic studies.


Asunto(s)
Biosíntesis de Proteínas , Estabilidad del ARN , Codón , Humanos , Nucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962351

RESUMEN

Typhoid fever, a human-specific disease, is primarily caused by the pathogen Salmonella enterica serovar Typhi. It is estimated that 3 to 5% of people infected with typhoid fever become chronic carriers. Studies have demonstrated that a mechanism of chronic carriage involves biofilm formation on gallstone surfaces. In the course of a previous study using a chronic carriage mouse model, a Salmonella enterica serovar Typhimurium isolate was recovered from a mouse gallstone that exhibited a 2-fold increase in biofilm formation over the wild type. In order to identify the gene(s) responsible for the phenotype, the genomic sequences of this isolate and others were determined and compared. These sequences identified single nucleotide polymorphisms (SNPs) in 14 genes. Mutations in the most promising candidates, envZ and rcsB, were created, but neither showed increased biofilm-forming ability separately or in combination. The hyperbiofilm isolate did, however, present variations in cellular appendages observable using different techniques and a preferential binding to cholesterol. The isolate was also examined for systemic virulence and the ability to colonize the gallbladder/gallstones in a mouse model of chronic infection, demonstrating a systemic virulence defect and decreased gallbladder/gallstone colonization. Finally, to determine if the appearance of hyperbiofilm isolates could be replicated in vitro and if this was a common event, wild-type Salmonella spp. were grown long term in vitro under gallbladder-mimicking conditions, resulting in a high proportion of isolates that replicated the hyperbiofilm phenotype of the original isolate. Thus, Salmonella spp. acquire random mutations under the gallbladder/gallbladder-simulating conditions that may aid persistence but negatively affect systemic virulence.IMPORTANCE Chronic carriers are the main reservoirs for the spread of typhoid fever in regions of endemicity. Salmonella Typhi forms biofilms on gallstones in order to persist. A strain with enhanced biofilm-forming ability was recovered after a nine-month chronic-carriage mouse study. After sequencing this strain and recreating some of the mutations, we could not duplicate the phenotype. The isolate did show a difference in flagella, a preference to bind to cholesterol, and a systemic virulence defect. Finally, gallbladder conditions were simulated in vitro After 60 days, there was a 4.5-fold increase in hyperbiofilm isolates when a gallstone was present. These results indicate that Salmonella spp. can undergo genetic changes that improve persistence in gallbladder albeit at the cost of decreased virulence.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Vesícula Biliar/microbiología , Regulación Bacteriana de la Expresión Génica , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Animales , Colesterol/metabolismo , Cálculos Biliares/microbiología , Ratones , Ratones de la Cepa 129 , Polimorfismo de Nucleótido Simple , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA