RESUMEN
Here we report the preparation of a trimethoprim/2-hydroxypropyl-γ-cyclodextrin inclusion complex along with a physicochemical study, structural characterization, and molecular modeling of the complex. As main results, we observed from phase-solubility studies at two temperatures (20 °C and 35 °C) that the association constants decrease with increasing temperature. Values for K(1:1) constant were of the same magnitude order of those found for the parent γ-CD. The inclusion orientation as evidenced by ROESY measurements involves the inclusion of the 3,4,5-trimethoxybenzyl ring in the CD cavity from the larger rim. This is in agreement with semiempirical molecular modeling calculation.
Asunto(s)
Fenómenos Químicos , Trimetoprim/química , gamma-Ciclodextrinas/química , Glucosa/química , Cinética , Modelos Moleculares , Transición de Fase , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , TemperaturaRESUMEN
Here we report the structural characterization, physicochemical study and molecular modeling of the inclusion complex of trimethoprim in randomly methylated beta-cyclodextrin. The phase-solubility diagram obtained at pH 7.0 exhibited a linear behavior for the RAMEB concentrations studied suggesting a 1:1 stoichiometry and absence of aggregation in solution. From stoichiometric determination by the continuous variation method we confirmed a 1:1 stoichiometry. To make a detailed characterization of the inclusion mode, spectroscopic measurements by infrared and 1D and 2D (1)H NMR spectroscopy provided evidence that the inclusion mode is characterized by inclusion of the trimethoxyphenyl ring in the cavity; interactions with methyl groups located in the border of the cavity were also detected. The structure proposed was also confirmed by semiempirical molecular modeling.