Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37241540

RESUMEN

An experiment was performed to calibrate the capability of a tactile sensor, which is based on gallium nitride (GaN) nanopillars, to measure the absolute magnitude and direction of an applied shear force without the need for any post-processing of data. The force's magnitude was deduced from monitoring the nanopillars' light emission intensity. Calibration of the tactile sensor used a commercial force/torque (F/T) sensor. Numerical simulations were carried out to translate the F/T sensor's reading to the shear force applied to each nanopillar's tip. The results confirmed the direct measurement of shear stress from 3.71 to 50 kPa, which is in the range of interest for completing robotic tasks such as grasping, pose estimation, and item discovery.

2.
Nano Lett ; 22(20): 8174-8180, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36223431

RESUMEN

A wafer-thin chip-scale portable spectrometer suitable for wearable applications based on a reconstructive algorithm was demonstrated. A total of 16 spectral encoders that simultaneously functioned as photodetectors were monolithically integrated on a chip area of 0.16 mm2 by applying local strain engineering in compressively strained InGaN/GaN multiple quantum well heterostructures. The built-in GaN pn junction enabled a direct photocurrent measurement. A non-negative least-squares (NNLS) algorithm with total-variation regularization and a choice of a proper kernel function was shown to deliver a decent spectral reconstruction performance in the wavelength range of 400-645 nm. The accuracies of spectral peak positions and intensity ratios between peaks were found to be 0.97% and 10.4%, respectively. No external optics, such as collimation optics and apertures, were used, enabled by angle-insensitive light-harvesting structures, including an array of cone-shaped backreflectors fabricated on the underside of the sapphire substrate.


Asunto(s)
Galio , Galio/química , Semiconductores , Iluminación , Análisis de Falla de Equipo , Diseño de Equipo , Óxido de Aluminio/química
3.
Micromachines (Basel) ; 13(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35334674

RESUMEN

A semiconductor spectrometer chip with a monolithically integrated light-emitting diode was demonstrated. The spectrometer design was based on a computational reconstruction algorithm and a series of absorptive spectral filters directly built in to the photodetectors' active regions. The result is the elimination of the need to employ external optics to control the incident angle of light. In the demonstration, an array of gallium nitride (GaN) based photodetectors with wavelength selectivity generated via the principle of local strain engineering were designed and fabricated. Additionally, a GaN based LED was monolithically integrated. An optical blocking structure was used to suppress the LED-photodetector interference and was shown to be essential for the spectroscopic functionality. A proof of concept using a reflection spectroscopy configuration was experimentally conducted to validate the feasibly of simultaneously operating the LED excitation light source and the photodetectors. Spectral reconstruction using a non-negative least squares (NNLS) algorithm enhanced with orthogonal matching pursuit was shown to reconstruct the signal from the reflection spectroscopy. Optics-free operation was also demonstrated.

4.
Nano Lett ; 21(19): 8304-8310, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34597518

RESUMEN

An ultrathin tactile sensor with directional sensitivity and capable of mapping at a high spatial resolution is proposed and demonstrated. Each sensor node consists of two gallium nitride (GaN) nanopillar light-emitting diodes. Shear stress applied on the nanopillars causes the electrons and holes to separate in the radial direction and reduces the light intensity emitted from the nanopillars. A sensor array comprising 64 sensor nodes was designed and fabricated. Two-dimensional directional sensitivity was experimentally confirmed with a dynamic range of 1-30 mN and an accuracy of ±1.3 mN. Tracking and mapping of an external force moving across the sensor array were also demonstrated. Finally, the proposed tactile sensor's sensitivity was tested with a fingertip gently moving across the sensor array. The sensor successfully registered the finger movement's direction and fingerprint pattern.


Asunto(s)
Fenómenos Mecánicos , Tacto , Luz
5.
Micromachines (Basel) ; 12(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203175

RESUMEN

In this paper, a spectrometer design enabling an ultrathin form factor is proposed. Local strain engineering in group III-nitride semiconductor nanostructured light-absorbing elements enables the integration of a large number of photodetectors on the chip exhibiting different absorption cut-off wavelengths. The introduction of a simple cone-shaped back-reflector at the bottom side of the substrate enables a high light-harvesting efficiency design, which also improves the accuracy of spectral reconstruction. The cone-shaped back-reflector can be readily fabricated using mature patterned sapphire substrate processes. Our design was validated via numerical simulations with experimentally measured photodetector responsivities as the input. A light-harvesting efficiency as high as 60% was achieved with five InGaN/GaN multiple quantum wells for the visible wavelengths.

6.
Appl Opt ; 59(10): 2963-2968, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32400571

RESUMEN

A variable transmission thin film for visible light is proposed based on a mechanically actuated origami structure coated with metallic nanoparticles. The transmissivity can be tuned continuously from 0 to >90% for unpolarized incident light. Power is only required for switching and is not necessary to maintain the desired transmittance state. The asymmetric metal nanorods create two distinct plasmon resonances. Controlling the orientation of the nanorods with respect to the direction of the incident light changes the optical transmittance. The switching speed is only limited by the mechanical actuation and not by the optical response of the materials. The applicability of the proposed film for smart glass applications is investigated. Good image transmission clarity with minimal distortion is shown.

7.
Micromachines (Basel) ; 11(1)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940852

RESUMEN

A set of empirical equations were developed to describe the optical properties of III-nitride dot-in-wire nanostructures. These equations depend only on the geometric properties of the structures, enabling the design process of a III-nitride light emitter comprised of dot-in-wire polar nanostructures, to be greatly simplified without first-principle calculations. Results from the empirical model were compared to experimental measurements and reasonably good agreements were observed. Strain relaxation was found to be the dominant effect in determining the optical properties of dot-in-wire nanostructures.

8.
Opt Express ; 27(26): 38229-38235, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878593

RESUMEN

An LED chip containing monolithically integrated red, green, and blue channels was fabricated and characterized. Using local strain engineering in gallium nitride p-i-n nanopillar structures, each color channel emits a distinct color with emission wavelength determined entirely by the diameter of the nanopillar. The crosstalk between color channels is negligible. As a result, individually addressable color channels can be integrated on the same substrate which will be suitable for color-tunable lighting applications. Optical and electrical properties were measured and discussed. Fabrication challenges which degraded power efficiency of the shorter-wavelength channel were analyzed. Potential strategies for improvements were proposed.

9.
Nanotechnology ; 29(16): 165201, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29388922

RESUMEN

A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

10.
IEEE Photonics J ; 9(3)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28751938

RESUMEN

A new form of light-emitting diode (LED) light suitable for general illumination is proposed to enhance subconscious, nonimage-forming visual responses, which are essential to our well-being. Pulsing light has been shown to reduce photoreceptor adaptation and elicit stronger subconscious visual responses at an indoor illumination level. Using the silent substitution technique, a melanopsin-selective flicker can be added into white light. A linear optimization algorithm was developed to suppress any perceivable fluctuation of light intensity and colors of illuminated objects. Two examples of lights are given to illustrate the potential applications of the proposed multi-LED light for general illumination and therapeutic purposes.

11.
Sci Rep ; 7: 42962, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256529

RESUMEN

In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated.

12.
Neuron ; 88(6): 1136-1148, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26627311

RESUMEN

We report a scalable method to monolithically integrate microscopic light emitting diodes (µLEDs) and recording sites onto silicon neural probes for optogenetic applications in neuroscience. Each µLED and recording site has dimensions similar to a pyramidal neuron soma, providing confined emission and electrophysiological recording of action potentials and local field activity. We fabricated and implanted the four-shank probes, each integrated with 12 µLEDs and 32 recording sites, into the CA1 pyramidal layer of anesthetized and freely moving mice. Spikes were robustly induced by 60 nW light power, and fast population oscillations were induced at the microwatt range. To demonstrate the spatiotemporal precision of parallel stimulation and recording, we achieved independent control of distinct cells ∼ 50 µm apart and of differential somato-dendritic compartments of single neurons. The scalability and spatiotemporal resolution of this monolithic optogenetic tool provides versatility and precision for cellular-level circuit analysis in deep structures of intact, freely moving animals.


Asunto(s)
Conducta Animal/fisiología , Neuronas/fisiología , Optogenética/métodos , Estimulación Luminosa/métodos , Silicio , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/instrumentación
13.
Materials (Basel) ; 8(3): 1204-1212, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28787997

RESUMEN

This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO2) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient (d33) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF2) etch and therefore eliminating the need for backside lithography and etching.

14.
Nanotechnology ; 23(45): 455301, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23085680

RESUMEN

We present a novel approach to the fabrication of zero-mode waveguides (ZMWs) using inexpensive processing techniques. Our method is capable of rapid fabrication of circular nanoapertures with diameters ranging from 70 nm to 2 µm, allowing us to perform a detailed characterization of the dependence of the fluorescence emission on the waveguide diameter. We also validated the use of the fabricated ZMWs by detecting single molecule binding events with a signal-to-noise ratio of ten.

15.
Opt Express ; 19(4): 3218-25, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21369144

RESUMEN

We proposed a metal-clad semiconductor nanoring laser structure that exhibited a superior scaling properties for D/λ(0) > 0.5 where D is the device diameter. We theoretically analyzed the metal-cald nanoring laser and compared its scaling properties with two other similar nanolaser structures. We found that the two design parameters, namely the ring width and the ring diameter, enable independent emission wavelength control from device dimension. This property in combination with other desirable features including in-plane out-coupling and monolithic integration make the metal-clad nanoring laser highly attractive for photonic integration.

16.
Opt Lett ; 29(19): 2291-3, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15524384

RESUMEN

We demonstrate slow light via population oscillation in semiconductor quantum-well structures for the first time. A group velocity as low as 9600 m/s is inferred from the experimentally measured dispersive characteristics. The transparency window exhibits a bandwidth as large as 2 GHz.

17.
Opt Express ; 10(19): 1003-8, 2002 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19451957

RESUMEN

We demonstrate a novel buried oxide grating structure formed by selectively-oxidized AlxGa1-xAs grown on nonplanar substrates using lowpressure MOCVD for the first time. Localized aluminum content variation in AlGaAs is obtained with MOCVD growth on nonplanar substrate. Buried aluminum oxide/semiconductor distributed feedback structure is achieved with selective oxidation of these AlGaAs layers. We fabricated a resonant-cavity-enhanced photodetector with the imbedded buried-oxide structure and measured the photodetector responsivity spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA