Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 865, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187767

RESUMEN

BACKGROUND: The immunological background responsible for the severe course of COVID-19 and the immune factors that protect against SARS-CoV-2 infection are still unclear. The aim of this study was to investigate immune system status in persons with high exposure to SARS-CoV-2 infection. METHODS: Seventy-one persons employed in the observation and infectious diseases unit were qualified for the study between November 2020 and October 2021. Symptomatic COVID-19 was diagnosed in 35 persons. Anti-SARS-CoV-2 antibodies were also found in 8 persons. Peripheral blood mononuclear cells subpopulations were analyzed by flow cytometry, and the concentrations of cytokines and anti-SARS-CoV-2 antibodies were determined by ELISA. RESULTS: The percentages of cytotoxic T lymphocytes (CTLs), CD28+ and T helper (Th) cells with invariant T-cell receptors were significantly higher in persons with symptomatic COVID-19 than in those who did not develop COVID-19' symptoms. Conversely, symptomatic COVID-19 persons had significantly lower percentages of: a) CTLs in the late stage of activation (CD8+/CD95+), b) NK cells, c) regulatory-like Th cells (CD4+/CTLA-4+), and d) Th17-like cells (CD4+/CD161+) compared to asymptomatic COVID-19' persons. Additionally, persons with anti-SARS-CoV-2 antibodies had a significantly higher lymphocyte count and IL-6 concentration than persons without these antibodies. CONCLUSION: Numerous lymphocyte populations are permanently altered by SARS-CoV-2 infection. High percentages of both populations: NK cells-as a part of the non-specific response, and T helper cells' as those regulating the immune response, could protect against the acute COVID-19 symptoms development. Understanding the immune background of COVID-19 may improve the prevention of this disease by identifying people at risk of a severe course of infection. TRIAL REGISTRATION: This is a retrospective observational study without a trial registration number.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , Masculino , Femenino , SARS-CoV-2/inmunología , Adulto , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Personal de Salud , Citocinas/inmunología , Citocinas/sangre , Leucocitos Mononucleares/inmunología , Linfocitos T Citotóxicos/inmunología
2.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611813

RESUMEN

Over the years, several new medicinal substances have been introduced for the treatment of diseases caused by bacteria and parasites. Unfortunately, due to the production of numerous defense mechanisms by microorganisms and parasites, they still pose a serious threat to humanity around the world. Therefore, laboratories all over the world are still working on finding new, effective methods of pharmacotherapy. This research work aimed to synthesize new compounds derived from 3-trifluoromethylbenzoic acid hydrazide and to determine their biological activity. The first stage of the research was to obtain seven new compounds, including six linear compounds and one derivative of 1,2,4-triazole. The PASS software was used to estimate the potential probabilities of biological activity of the newly obtained derivatives. Next, studies were carried out to determine the nematocidal potential of the compounds with the use of nematodes of the genus Rhabditis sp. and antibacterial activity using the ACCT standard strains. To determine the lack of cytotoxicity, tests were performed on two cell lines. Additionally, an antioxidant activity test was performed due to the importance of scavenging free radicals in infections with pathogenic microorganisms. The conducted research proved the anthelmintic and antibacterial potential of the newly obtained compounds. The most effective were two compounds with a 3-chlorophenyl substituent, both linear and cyclic derivatives. They demonstrated higher efficacy than the drugs used in treatment.


Asunto(s)
Antibacterianos , Antinematodos , Semicarbacidas , Antibacterianos/farmacología , Línea Celular , Hidrazinas
3.
Front Immunol ; 15: 1344858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469304

RESUMEN

Introduction: Expression of PD-L1 on cancer cells is the only validated predictive factor for immunotherapy in NSCLC (Non-Small Cell Lung Cancer) patients. However, on this basis, it is difficult to predict the occurrence of resistance to immune checkpoint inhibitors (ICIs). MicroRNAs are widely studied as biomarkers of cancers. Our study was designed to determine whether microRNAs can be sensitive predictive factors in the qualification of NSCLC patients to first-line immunotherapy or chemoimmunotherapy. Material and methods: The two-stage research on validation group (n=20) and study group (n=35) of patients with advanced NSCLC was conducted. Analysis of microRNAs expression by qPCR in plasma collected prior to the start of immunotherapy (pembrolizumab) or chemoimmunotherapy (combination of pembrolizumab with chemotherapy) was made. Broad-spectrum analysis of microRNAs expression was used in the studied group. Three microRNAs selected in that group as important for the effectiveness of ICIs were then examined in the validation group. Results: In the studied group, significantly higher expression of miRNA-126-3p, miR-144-3p and miR-146-5p was observed in patients with long PFS compared to those with short PFS. In the validation group, low miRNA-126 expression indicated lower median progression-free survival and overall survival (2.3 vs. 5.0 months and 5.2 vs 11.2, respectively). These patients had a significantly higher risk of progression (HR= 2.92, 95% CI: 1.01 to 8.40, p=0.04) and death (HR=3.64, 95% CI: 1.22 to 10.84, p=0.02). Conclusion: Our study showed that the expression of miR-126 in blood plasma may be a predictive factor for the effectiveness of first-line immunotherapy or chemoimmunotherapy in advanced NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inmunoterapia
4.
Cancers (Basel) ; 15(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509393

RESUMEN

Kirsten rat sarcoma viral oncogene homologue (KRAS) gene mutations are among the most commonly found oncogenic alterations in non-small cell lung cancer (NSCLC) patients. Unfortunately, KRAS mutations have been considered "undruggable" for many years, making treatment options very limited. Immunotherapy targeting programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has emerged as a promising therapeutic option for NSCLC patients. However, some studies have suggested a lower response rate to immunotherapy in KRAS-mutated NSCLC patients with the coexistence of mutations in the STK11 (Serine/Threonine Kinase 11) gene. However, recent clinical trials have shown promising results with the combination of immunotherapy and chemotherapy or immunotherapy and KRAS inhibitors (sotorasib, adagrasib) in such patients. In other studies, the high efficacy of immunotherapy has been demonstrated in NSCLC patients with mutations in the KRAS gene that do not coexist with other mutations or coexist with the TP53 gene mutations. In this paper, we review the available literature on the efficacy of immunotherapy in KRAS-mutated NSCLC patients. In addition, we presented single-site experience on the efficacy of immunotherapy in NSCLC patients with KRAS mutations. The effectiveness of chemoimmunotherapy or immunotherapy as well as KRAS inhibitors extends the overall survival of advanced NSCLC patients with the G12C mutation in the KRAS gene to 2-3 years. This type of management has become the new standard in the treatment of NSCLC patients. Further studies are needed to clarify the potential benefits of immunotherapy in KRAS-mutated NSCLC patients and to identify potential biomarkers that may help predict response to therapy.

5.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291146

RESUMEN

For many years, researchers have been trying to develop the most effective ways to fight lung cancer, which is the cause of the largest number of cancer-related deaths among men and women worldwide. The most advanced treatments for nearly all non-small-cell lung cancer (NSCLC) types include immunotherapy with immune checkpoint inhibitors (ICIs), mainly anti-programmed death 1/anti-programmed death ligand 1 monoclonal antibodies (anti-PD-1/PD-L1 mAbs) in monotherapy or in combination with other strategies. Despite significant advances, long survival is not achievable in most cases, so new solutions are constantly being sought. One of the questions raised by oncologists is the efficacy of ICIs in patients with molecular driver alterations, especially when the possibilities of using molecularly targeted therapies are exhausted (e.g., due to resistance to tyrosine kinase inhibitors). There are studies investigating this problem, but it is still poorly described. Among probable immunotherapy' failures reasons, low immunogenicity of tumors with one driver mutation is listed. Nevertheless, in some cases, the therapy is efficient, and more research is required to establish the management of NSCLC patients with oncogenic driver abnormalities. The aim of this article is to review current discoveries in this matter.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Terapia Molecular Dirigida , Femenino , Humanos , Masculino , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328510

RESUMEN

Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1
7.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502043

RESUMEN

The efficiency of immunotherapy using monoclonal antibodies that inhibit immune checkpoints has been proven in many clinical studies and well documented by numerous registration approaches. To date, PD-L1 expression on tumor and immune cells, tumor mutation burden (TMB), and microsatellite instability (MSI) are the only validated predictive factors used for the qualification of cancer patients for immunotherapy. However, they are not the ideal predictive factors. No response to immunotherapy could be observed in patients with high PD-L1 expression, TMB, or MSI. On the other hand, the effectiveness of this treatment method also may occur in patients without PD-L1 expression or with low TMB and with microsatellite stability. When considering the best predictive factor, we should remember that the effectiveness of immunotherapy relies on an overly complex process depending on many factors. To specifically stimulate lymphocytes, not only should their activity in the tumor microenvironment be unlocked, but above all, they should recognize tumor antigens. The proper functioning of the anticancer immune system requires the proper interaction of many elements of the specific and non-specific responses. For these reasons, a multi-parameter analysis of the immune system at its different activity levels is considered a very future-oriented predictive marker. Such complex immunological analysis is performed using modern molecular biology techniques. Based on the gene expression studies, we can determine the content of individual immune cells within the tumor, its stroma, and beyond. This includes all cell types from active memory cytotoxic T cells, M1 macrophages, to exhausted T cells, regulatory T cells, and M2 macrophages. In this article, we summarize the possibilities of using an immune system analysis to predict immunotherapy efficacy in cancer patients. Moreover, we present the advantages and disadvantages of immunoprofiling as well as a proposed future direction for this new method of immune system analysis in cancer patients who receive immunotherapy.


Asunto(s)
Biomarcadores de Tumor/inmunología , Inmunofenotipificación/métodos , Inmunoterapia/métodos , Neoplasias Pulmonares/inmunología , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA