Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(28): 41137-41154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849615

RESUMEN

The efficiency of element accumulation depends on numerous factors, where the physico-chemical characteristics of the soil seem to be very important, and the role of taxonomic rank in the accumulation of elements by mushrooms seems to be important. The aim of the study was to compare the mineral composition of 7 species belonging to Leccinum and Suillus genera, collected between 2019 and 2021 from localizations in the west-central part of Poland. The research aimed to indicate the role of selected soil parameters in stimulating/inhibiting the accumulation of elements by selected Boletales mushroom species and to answer the question about the role of species belonging to the genus as an indicator determining the specific mineral composition of fruiting bodies. Soil pH and other soil properties (granulometric composition, organic carbon, degree of organic matter decomposition) may significantly affect mushrooms' mineral composition. Mushroom species belonging to Leccinum genus exhibited the higher amount of essential major and trace elements than species of Suillus genus). It suggests that the affiliation of the studied mushroom species to a specific genus may affect their mineral composition, and the physicochemical properties of the soil may be responsible for the lack of a clear division in the efficiency of element(s) accumulation. Selected species contain high amounts of K, Cu, Fe, and Zn, while others, such as selected Suillus gravellei fruiting bodies, also contain As and Cd. The results described serve as an introduction to a broader scientific discussion and require many further studies to confirm the role of taxonomic ranks and the influence of soil characteristics on the accumulation of elements by fruiting bodies.


Asunto(s)
Agaricales , Minerales , Suelo , Suelo/química , Agaricales/química , Minerales/análisis , Polonia
2.
Plants (Basel) ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794365

RESUMEN

Alterations in leaf architecture can be used as an indicator of the substrate toxicity level as well as the potential of a given plant species in the phytoremediation of polluted areas, e.g., mining sludge. In this work, we demonstrated, for the first time, the nature and scale of alterations in leaf architecture at the tissue and cellular levels occurring in Norway maple growing on mining sludge originating from a copper mine in Lubin (Poland). The substrate differs from other mine wastes, e.g., calamine or serpentine soils, due to an extremely high level of arsenic (As). Alterations in leaf anatomy predominantly included the following: (1) a significant increase in upper epidermis thickness; (2) a significant decrease in palisade parenchyma width; (3) more compact leaf tissue organization; (4) the occurrence of two to three cell layers in palisade parenchyma in contrast to one in the control; (5) a significantly smaller size of cells building palisade parenchyma. At the cellular level, the alterations included mainly the occurrence of local cell wall thickenings-predominantly in the upper and lower epidermis-and the symptoms of accelerated leaf senescence. Nevertheless, many chloroplasts showed almost intact chloroplast ultrastructure. Modifications in leaf anatomy could be a symptom of alterations in morphogenesis but may also be related to plant adaptation to water deficit stress. The occurrence of local cell wall thickenings can be considered as a symptom of a defence strategy involved in the enlargement of apoplast volume for toxic elements (TE) sequestration and the alleviation of oxidative stress. Importantly, the ultrastructure of leaf cells was not markedly disturbed. The results suggested that Norway maple may have good phytoremediation potential. However, the general shape of the plant, the significantly smaller size of leaves, and accelerated senescence indicated the high toxicity of the mining sludge used in this experiment. Hence, the phytoremediation of such a substrate, specifically including use of Norway maple, should be preceded by some amendments-which are highly recommended.

3.
Int J Phytoremediation ; 21(10): 1019-1031, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020852

RESUMEN

The aim of the study was to evaluate the As phytoextraction potential of four tree species: Acer pseudoplatanus L., Betula pendula Roth., Quercus robur L., and Ulmus laevis Pall. in light of their prospective use in the phytoremediation of arsenate [As(V)] contaminated soils. The content of nutritional elements: B, Ca, K, Mg, Na, Si, P, and S was also analyzed. The trees were grown for 1 month in hydroponic cultures (Knop medium) supplemented with As(V), (1 mM). The results showed that the highest As accumulation efficiency was characterized by B. pendula (BCF = 0.87) and Q. robur (BCF = 0.5). Betula pendula accumulated about 80% of As in its roots (TF = 0.22) whereas Q. robur accumulated more than 60% of As in its shoots (TF = 1.60). The other tree species accumulated significantly lower amounts of As, more than 60% of which collected in their shoots. As(V) phytoextraction led to a significantly lower level of P and S in the roots of all tested tree species. Betula pendula seems promising for phytostabilisation and Q. robur for phytoextraction of As(V) from contaminated soils. The obtained results confirm the accumulation and translocation of As(V), as well as the acquisition of nutritional elements by the selected tree species.


Asunto(s)
Arseniatos , Árboles , Biodegradación Ambiental , Hojas de la Planta , Estudios Prospectivos
4.
Environ Pollut ; 248: 247-259, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30798026

RESUMEN

Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.


Asunto(s)
Biodegradación Ambiental , Pared Celular/efectos de los fármacos , Minería , Contaminantes del Suelo/toxicidad , Tilia/fisiología , Compuestos de Calcio , Óxidos , Raíces de Plantas/química , Plantas , Aguas del Alcantarillado/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Oligoelementos/análisis , Árboles
5.
Environ Sci Pollut Res Int ; 24(28): 22183-22195, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28791581

RESUMEN

The aim of the study was to compare the phytoextraction abilities of six tree species (Acer platanoides L., Acer pseudoplatanus L., Betula pendula Roth, Quercus robur L., Tilia cordata Miller, Ulmus laevis Pall.), cultivated on mining sludge contaminated with arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), thallium (Tl), and zinc (Zn). All six tree species were able to survive on such an unpromising substrate. However, A. platanoides and T. cordata seedlings grown on the polluted substrate showed significantly lower biomass than control plants (55.5 and 45.6%, respectively). As, Cd, Cu, Pb, and Tl predominantly accumulated in the roots of all the analyzed tree species with the following highest contents: 1616, 268, 2432, 547, and 856 mg kg-1, respectively. Zn was predominantly localized in shoots with the highest content of 5801 and 5732 mg kg-1 for U. laevis and A. platanoides, respectively. A. platanoides was the most effective in Zn phytoextaction, with a bioconcentration factor (BCF) of 8.99 and a translocation factor (TF) of 1.5. Furthermore, with the exception of A. pseudoplatanus, the analyzed tree species showed a BCF > 1 for Tl, with the highest value for A. platanoides (1.41). However, the TF for this metal was lower than 1 in all the analyzed tree species. A. platanoides showed the highest BCF and a low TF and could, therefore, be a promising species for Tl phytostabilization. In the case of the other analyzed tree species, their potential for effective phytoextraction was markedly lower. Further studies on the use of A. platanoides in phytoremediation would be worth conducting.


Asunto(s)
Arsénico/análisis , Metales Pesados/análisis , Minería , Aguas del Alcantarillado/análisis , Contaminantes del Suelo/análisis , Árboles/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Polonia , Árboles/química
6.
Plant Physiol ; 173(2): 1409-1419, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27923986

RESUMEN

Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula × tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other's concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Celulosa/análogos & derivados , Populus/fisiología , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacología , Hidrolasas de Éster Carboxílico/genética , Celulosa/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/efectos de los fármacos , Populus/genética , Ácido Salicílico/metabolismo
7.
Environ Pollut ; 214: 354-361, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27107260

RESUMEN

Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.


Asunto(s)
Biodegradación Ambiental , Bryopsida/citología , Bryopsida/metabolismo , Pared Celular/metabolismo , Plomo/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Araceae/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo
8.
Environ Pollut ; 205: 315-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123720

RESUMEN

Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with "Pb accumulation zone". Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals.


Asunto(s)
Plomo/metabolismo , Pectinas/metabolismo , Populus/metabolismo , Contaminantes del Suelo/metabolismo , Anticuerpos Monoclonales/metabolismo , Biodegradación Ambiental , Biomarcadores/sangre , Esterificación , Raíces de Plantas/metabolismo
9.
Plant Biotechnol J ; 11(4): 459-69, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23231480

RESUMEN

Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA-hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water-deficit tolerance of crop plants.


Asunto(s)
Sequías , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Solanum tuberosum/genética
10.
Protoplasma ; 249(2): 347-51, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21590317

RESUMEN

Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy.


Asunto(s)
Araceae/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Raíces de Plantas/metabolismo , Araceae/ultraestructura , Pared Celular/ultraestructura , Microscopía Electrónica de Transmisión , Raíces de Plantas/ultraestructura
11.
Protoplasma ; 248(4): 695-705, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21052747

RESUMEN

In this report, the localization and spatial distribution of two categories of pectin, high and low methylesterified, on the background of dynamic in loosely bound calcium (Ca(2+)) in Haemanthus hollow style were studied before and after pollination. In the style transmitting tract of unpollinated pistil, mainly high-methylesterified pectins were present, both in the transmitting tract epidermis and in the style canal. After pollination, an increase in the level of two investigated categories of pectin was observed, but the amount of high-methylesterified one in each period of time analyzed was permanently higher. Locally, in the regions of the style canal penetrated by pollen tubes, process of pectin de-esterification was initiated. However, pollination caused an increase of loosely bound Ca(2+) level in the style transmitting tract, this process appears to be not linked with pectin de-esterification and possible Ca(2+) release after the lysis of Ca(2+) cross-linked de-esterified pectin. Instead, it seems to be based on Ca(2+) exocytosis from the transmitting tract epidermis cells providing a source of Ca(2+) for pollen tubes growing in Haemanthus hollow style.


Asunto(s)
Calcio/metabolismo , Flores/metabolismo , Liliaceae/metabolismo , Pectinas/metabolismo , Polen/fisiología , Esterificación , Exocitosis , Flores/anatomía & histología , Flores/fisiología , Inmunohistoquímica , Liliaceae/anatomía & histología , Liliaceae/fisiología , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/metabolismo , Polen/anatomía & histología , Polen/metabolismo , Polinización , Vacuolas/metabolismo
12.
Environ Pollut ; 158(1): 325-38, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19647914

RESUMEN

The hypothesis that lead (Pb) can be uptake or remobilized from the cell wall (CW) by internalization withlow-esterified pectins (up to 40%--JIM5-P), was studied in tip-growing apical cell of Funaria hygrometrica protonemata. Treatment 4h with 1mM PbCl(2) caused marked vesicular traffic intensification and the common internalization of JIM5-P from the CW. Lead bound to JIM5-P was internalized from the CW, together with this compound and entered the protoplast. It showed that Pb deposited in CW is not as safe for plant cell as previously believed. However, pulse-chase experiments (recovering 4 h and 24 h) indicated that CW and its thickenings can function as the final sequestration compartments. In Pb deposition sites, a callose layer occurred. It was localized from the protoplast site, next to Pb deposits separating sequestrated to CW and its thickenings Pb from plasma membrane almost certainly protecting the plant cell from its returning into the protoplast.


Asunto(s)
Bryopsida/metabolismo , Pared Celular/metabolismo , Plomo/metabolismo , Pectinas/metabolismo
13.
Protoplasma ; 233(3-4): 187-94, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18563516

RESUMEN

In the light of our previous work, we know that there is a relationship between bound polyamines and the chloroplast differentiation process. This relationship may represent an important component of the process and be part of the mechanism of kinetin action, which stimulates chloroplast differentiation. To clarify the nature of the binding of polyamines to chloroplast structures, the possible involvement of transglutaminases in kinetin-stimulated chloroplast photodevelopment was investigated. Immunodetection of transglutaminases revealed bands at 77, 50 and 30 kDa both in etioplasts and chloroplasts. The data indicated a positive correlation between enzyme level and activity. It also demonstrated the regulation of transglutaminase protein expression by kinetin. The suborganellar location of transglutaminases by electron microscopy showed that the enzyme is peculiarly localised, mainly in pro-thylakoids and appressed grana thylakoids. The data corroborated that spermidine post-translational modification of certain plastid proteins of 58, 29, 26 and 12 kDa occurred. The results we obtained suggest that transglutaminases take part in the formation of the chloroplast structure via a mechanism whereby polyamines bind to their protein substrates. These findings about the effect of kinetin on conjugation provide a new contribution to the understanding of the mechanism of kinetin action on etioplast-to chloroplast transformation.


Asunto(s)
Cloroplastos/enzimología , Cotiledón/metabolismo , Cucumis sativus/enzimología , Transglutaminasas/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Cotiledón/enzimología , Electroforesis en Gel Bidimensional , Inmunohistoquímica , Cinetina/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA