Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006010

RESUMEN

Intraoral scanners are widely used in a clinical setting for orthodontic treatments and tooth restorations, and are also useful for assessing dental wear and pathology progression. In this study, we assess the utility of using an intraoral scanner and associated software for quantifying dental tissue loss in non-human primates. An upper and lower second molar for 31 captive hamadryas baboons (Papio hamadryas) were assessed for dental tissue loss progression, giving a total sample of 62 teeth. The animals are part of the Southwest National Primate Research Center and were all fed the same monkey-chow diet over their lifetimes. Two molds of each dentition were taken at either two- or three-year intervals, and the associated casts scanned using an intraoral scanner (Medit i700). Tissue loss was calculated in WearCompare by superimposition of the two scans followed by subtraction analysis. Four individuals had dental caries, and were assessed separately. The results demonstrate the reliability of these techniques in capturing tissue loss data, evidenced by the alignment consistency between scans, lack of erroneous tissue gain between scans, and uniformity of tissue loss patterns among individuals (e.g., functional cusps showing the highest degree of wear). The average loss per mm2 per year for all samples combined was 0.05 mm3 (0.04 mm3 for females and 0.08 mm3 for males). There was no significant difference in wear progression between upper and lower molars. Substantial variation in the amount of tissue loss among individuals was found, despite their uniform diet. These findings foster multiple avenues for future research, including the exploration of wear progression across dental crowns and arcades, correlation between different types of tissue loss (e.g., attrition, erosion, fractures, caries), interplay between tissue loss and microwear/topographic analysis, and the genetic underpinnings of tissue loss variation.


Asunto(s)
Progresión de la Enfermedad , Desgaste de los Dientes , Animales , Desgaste de los Dientes/patología , Desgaste de los Dientes/veterinaria , Estudios Longitudinales , Papio hamadryas , Masculino , Femenino , Diente Molar/patología , Diente Molar/diagnóstico por imagen , Caries Dental/patología , Caries Dental/diagnóstico por imagen , Reproducibilidad de los Resultados
2.
Am J Biol Anthropol ; 184(3): e24952, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38775381

RESUMEN

Computed tomography (CT) and microcomputed tomography (µCT) require calibration against density phantoms scanned with specimens or during routine internal calibration for assessment of mineral concentration (MC) and density. In clinical studies involving bone, alternative calibration methods using bodily tissues and fluids ("phantomless" calibration) have been suggested. However, such tissues are seldom available in archeological and osteological research. This study investigates the potential of dental tissue as internal reference for calibration of µCT scans, facilitating the analysis of bone MC. We analyzed 70 molars from 24 extant primate species, including eight human teeth, each scanned with density phantoms for calibration. Our findings indicate that sampling specific regions of molars (lateral aspects of the mesial cusps) yields low variation in enamel and dentine MC values, averaging 1.27 g/cm3 (±0.03) for dentine and 2.25 g/cm3 (±0.03) for enamel. No significant differences were observed across molar types or among scanning procedures, including scanner model, resolution, and filters. An ad hoc test on 12 mandibles revealed low variance in MC between the conventional phantom and dental tissue calibration methods; all 36 measurements (low, medium, and high MC for each mandible) were within 0.05 g/cm3 of each other -81% were within 0.03 g/cm3 and 94% within 0.04 g/cm3. Based on these results, we propose a new "phantomless" calibration technique using these mean enamel and dentine MC values. The presented phantomless calibration method could aid in the assessment of bone pathology and enhance the scope of studies investigating bone structure and physical property variations in archeological, osteological, and laboratory-based research.


Asunto(s)
Densidad Ósea , Diente Molar , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Calibración , Animales , Humanos , Diente Molar/diagnóstico por imagen , Dentina/diagnóstico por imagen , Dentina/química , Primates , Fantasmas de Imagen , Esmalte Dental/diagnóstico por imagen , Esmalte Dental/química
3.
Am J Phys Anthropol ; 176(4): 703-712, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34405887

RESUMEN

Dental microwear formation on the posterior dentition is largely attributed to an organism's diet. However, some have suggested that dietary and environmental abrasives contribute more to the formation process than food, calling into question the applicability of dental microwear to the reconstruction of diet in the fossil record. Creating microwear under controlled conditions would benefit this debate, but requires accurately replicating the oral environment. This study tests the applicability of Artificial Resynthesis Technology (ART 5) to create microwear textures while mitigating the challenges of past research. ART 5 is a simulator that replicates the chewing cycle, responds to changes in food texture, and simulates the actions of the oral cavity. Surgically extracted, occluding pairs of third molars (n = 2 pairs) were used in two chewing experiments: one with dried beef and another with sand added to the dried beef. High-resolution molds were taken at 0, 50, 100, 2500, and 5000 simulated chewing cycles, which equates to approximately 1 week of chewing. Preliminary results show that ART 5 produces microwear textures. Meat alone may produce enamel prism rod exposure at 5000 cycles, although attrition cannot be ruled out. Meat with sand accelerates the wear formation process, with enamel prism rods quickly obliterated and "pit-and-scratch" microwear forming at approximately 2500 cycles. Future work with ART 5 will incorporate a more thorough experimental protocol with improved controls, pH of the simulated oral environment, and grit measurements; however, these results indicate the potential of ART 5 in untangling the complex variables of dental microwear formation.


Asunto(s)
Desgaste de los Dientes , Animales , Bovinos , Dieta , Alimentos , Masticación , Tecnología
4.
PLoS One ; 14(11): e0224573, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774826

RESUMEN

Early modern humans (EMH) are often touted as behaviorally advanced to Neandertals, with more sophisticated technologies, expanded resource exploitation, and more complex clothing production. However, recent analyses have indicated that Neandertals were more nuanced in their behavioral adaptations, with the production of the Châtelperronian technocomplex, the processing and cooking of plant foods, and differences in behavioral adaptations according to habitat. This study adds to this debate by addressing the behavioral strategies of EMH (n = 30) within the context of non-dietary anterior tooth-use behaviors to glean possible differences between them and their Neandertal (n = 45) counterparts. High-resolution casts of permanent anterior teeth were used to collect microwear textures of fossil and comparative bioarchaeological samples using a Sensofar white-light confocal profiler with a 100x objective lens. Labial surfaces were scanned, totaling a work envelope of 204 x 276 µm for each individual. The microwear textures were examined for post-mortem damage and uploaded to SSFA software packages for surface characterization. Statistical analyses were performed to examine differences in central tendencies and distributions of anisotropy and textural fill volume variables among the EMH sample itself by habitat, location, and time interval, and between the EMH and Neandertal samples by habitat and location. Descriptive statistics for the EMH sample were compared to seven bioarchaeological samples (n = 156) that utilized different tooth-use behaviors to better elucidate specific activities that may have been performed by EMH. Results show no significant differences between the means within the EMH sample by habitat, location, or time interval. Furthermore, there are no significant differences found here between EMH and Neandertals. Comparisons to the bioarchaeological samples suggest both fossil groups participated in clamping and grasping activities. These results indicate that EMH and Neandertals were similar in their non-dietary anterior tooth-use behaviors and provide additional evidence for overlapping behavioral strategies employed by these two hominins.


Asunto(s)
Conducta/fisiología , Fósiles/anatomía & histología , Incisivo/anatomía & histología , Hombre de Neandertal/anatomía & histología , Desgaste de los Dientes/etiología , Animales , Antropología Física , Fenómenos Biomecánicos , Ecosistema , Humanos , Incisivo/diagnóstico por imagen , Incisivo/fisiología , Masticación/fisiología , Hombre de Neandertal/fisiología , Propiedades de Superficie , Desgaste de los Dientes/diagnóstico por imagen
5.
J Hum Evol ; 105: 13-23, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28366197

RESUMEN

The causes of Neandertal anterior tooth wear patterns, including labial rounding, labial scratches, and differential anterior-posterior wear, have been debated for decades. The most common explanation is the "stuff-and-cut" hypothesis, which describes Neandertals clamping down on a piece of meat and slicing a portion close to their lips. "Stuff-and-cut" has been accepted as a general aspect of Neandertal behavior without fully assessing its variability. This study analyzes anterior dental microwear textures across habitats, locations, and time intervals to discern possible variation in Neandertal anterior tooth-use behavior. Forty-five Neandertals from 24 sites were analyzed, represented by high-resolution replicas of permanent anterior teeth. The labial surface was scanned for antemortem microwear using a white-light confocal profiler. The resultant 3D-point clouds, representing 204 × 276 µm for each specimen, were uploaded into SSFA software packages for texture characterization. Statistical analyses, including MANOVAs, ANOVAs, and pairwise comparisons, were completed on ranked microwear data. Neandertal descriptive statistics were also compared to 10 bioarchaeological samples of known or inferred dietary and behavioral regimes. The Neandertal sample varied significantly by habitat, suggesting this factor was a principal driving force for differences in Neandertal anterior tooth-use behaviors. The Neandertals from open habitats showed significantly lower anisotropy and higher textural fill volume than those inhabiting more closed, forested environments. The texture signature from the open-habitat Neandertals was most similar to that of the Ipiutak and Nunavut, who used their anterior teeth for intense clamping and grasping behaviors related to hide preparation. Those in more closed habitats were most similar to the Arikara, who did not participate in non-dietary behaviors. These Neandertal individuals had a broad range of texture values consistent with non-dietary and dietary behaviors, suggesting they varied more in anterior tooth-use behaviors and exploited a wider variety of plant and animal resources than did those from open habitats.


Asunto(s)
Dieta , Ecosistema , Fósiles/anatomía & histología , Hombre de Neandertal , Desgaste de los Dientes/patología , Animales , Europa (Continente) , Geografía , Medio Oriente , Hombre de Neandertal/anatomía & histología
6.
Am J Phys Anthropol ; 151(3): 477-91, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23737145

RESUMEN

Here we describe dental remains from a Neanderthal fossil assemblage from Moula-Guercy, France. Our report demonstrates that the Moula-Guercy hominid remains contribute important morphological, developmental, and behavioral data to understanding Neanderthal evolutionary history. We include gross comparative morphological descriptions and enamel surface microstructure and microwear data. These teeth reveal numerous characteristics that are diagnostic of Neanderthals and provide no evidence for the presence of any other hominid taxa. Enamel growth increment data from the Moula-Guercy specimens yield evidence of a Neanderthal pattern of development, although at the lower end of the range of variation. The presence of a significant number of linear enamel hypoplasias indicates that these individuals were stressed during childhood. Molar microwear data suggest that these Neanderthals did not differ significantly from modern humans in terms of the fracture properties of the food they were consuming. The incisor microwear and macro striations provide evidence that these individuals may have been using their anterior teeth as tools, similar to the practices of several modern human populations such as the Inuit, Ipiutak, and Australian Aboriginals, and reminiscent of evidence from other Neanderthals from Krapina, Croatia, as well as the 600,000 year old hominids from Sima de los Huesos, Spain. Am J Phys Anthropol 151:477-491, 2013.© 2013 Wiley Periodicals, Inc.


Asunto(s)
Esmalte Dental/anatomía & histología , Fósiles , Hombre de Neandertal/anatomía & histología , Diente/anatomía & histología , Animales , Esmalte Dental/fisiología , Esmalte Dental/ultraestructura , Francia , Microscopía Electrónica de Rastreo , Hombre de Neandertal/fisiología , Diente/fisiología , Diente/ultraestructura
7.
J Hum Evol ; 63(2): 429-37, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21784504

RESUMEN

Dental microwear analysis has proven to be a valuable tool for the reconstruction of aspects of diet in early hominins. That said, sample sizes for some groups are small, decreasing our confidence that results are representative of a given taxon and making it difficult to assess within-species variation. Here we present microwear texture data for several new specimens of Homo habilis and Paranthropus boisei from Olduvai Gorge, bringing sample sizes for these species in line with those published for most other early hominins. These data are added to those published to date, and microwear textures of the enlarged sample of H. habilis (n = 10) and P. boisei (n = 9) are compared with one another and with those of other early hominins. New results confirm that P. boisei does not have microwear patterns expected of a hard-object specialist. Further, the separate texture complexity analyses of early Homo species suggest that Homo erectus ate a broader range of foods, at least in terms of hardness, than did H. habilis, P. boisei, or the "gracile" australopiths studied. Finally, differences in scale of maximum complexity and perhaps textural fill volume between H. habilis and H. erectus are noted, suggesting further possible differences between these species in diet.


Asunto(s)
Dieta , Fósiles , Hominidae , Paleodontología , Diente , Animales , Dentición , Alimentos , Hominidae/clasificación , Masticación , Tanzanía , Desgaste de los Dientes
8.
Am J Phys Anthropol ; 137(4): 485-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18785631

RESUMEN

The power stroke of mastication has been traditionally divided into two parts, one which precedes centric occlusion, and the other which follows it-"Phase I" and "Phase II," respectively. Recent studies of primate mastication have called into question the role of Phase II in food processing, as they have found little muscle activity or accompanying bone strain following centric occlusion. That said, many researchers today look to Phase II facets to relate diet to patterns of dental microwear. This suggests the need to reevaluate microwear patterns on Phase I facets. Here we use texture analysis to compare and contrast microwear on facets representing both phases in three primate species with differing diets (Alouatta palliata, Cebus apella, and Lophocebus albigena). Results reaffirm that microwear patterns on Phase II facets better distinguish taxa with differing diets than do those on Phase I facets. Further, differences in microwear textures between facet types for a given taxon may themselves reflect diet. Some possible explanations for differences in microwear textures between facet types are proposed.


Asunto(s)
Dieta , Masticación/fisiología , Abrasión de los Dientes/fisiopatología , Alouatta , Animales , Cebus , Oclusión Dental , Preferencias Alimentarias , Humanos , Maloclusión/patología , Maloclusión/fisiopatología , Maloclusión/veterinaria , Enfermedades de los Monos/patología , Enfermedades de los Monos/fisiopatología , Diente/anatomía & histología , Abrasión de los Dientes/patología , Abrasión de los Dientes/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA