Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411707, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254137

RESUMEN

Bioorthogonal bond-cleavage reactions have emerged as a powerful tool for precise spatiotemporal control of (bio)molecular function in the biological context. Among these chemistries, the tetrazine-triggered elimination of cleavable trans-cyclooctenes (click-to-release) stands out due to high reaction rates, versatility, and selectivity. Despite an increasing understanding of the underlying mechanisms, application of this reaction remains limited by the cumulative performance trade-offs (i.e., click kinetics, release kinetics, release yield) of existing tools. Efficient release has been restricted to tetrazine scaffolds with comparatively low click reactivity, while highly reactive aryl-tetrazines give only minimal release. By introducing hydroxyl groups onto phenyl- and pyridyl-tetrazine scaffolds, we have developed a new class of 'bioorthogonal scissors' with unique chemical performance. We demonstrate that hydroxyaryl-tetrazines achieve near-quantitative release upon accelerated click reaction with cleavable trans-cyclooctenes, as exemplified by click-triggered activation of a caged prodrug, intramitochondrial cleavage of a fluorogenic probe (turn-on) in live cells, and rapid intracellular bioorthogonal disassembly (turn-off) of a ligand-dye conjugate.

2.
Sci Adv ; 8(17): eabl6339, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486732

RESUMEN

BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models. Results indicated that drug lipophilicity, plasma clearance, faster target dissociation, and, in particular, high albumin binding could limit dabrafenib action in visceral metastases compared to other KIs. This correlated with retrospective clinical observations. Computational modeling identified a timed strategy for combining dabrafenib and encorafenib to better sustain BRAF inhibition, which showed enhanced efficacy in mice. This study thus offers principles of spatial drug action that may help guide drug development, KI selection, and combination.

3.
Chem Sci ; 11(47): 12671-12676, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34094461

RESUMEN

We report on the unexpected finding that click modification of iduronyl azides results in a conformational flip of the pyranose ring, which led to the development of a new strategy for the design of superior enzyme substrates for the diagnostic assaying of iduronate-2-sulfatase (I2S), a lysosomal enzyme related to Hunter syndrome. Synthetic substrates are essential in testing newborns for metabolic disorders to enable early initiation of therapy. Our click-flipped iduronyl triazole showed a remarkably better performance with I2S than commonly used O-iduronates. We found that both O- and triazole-linked substrates are accepted by the enzyme, irrespective of their different conformations, but only the O-linked product inhibits the activity of I2S. Thus, in the long reaction times required for clinical assays, the triazole substrate substantially outperforms the O-iduronate. Applying our click-flipped substrate to assay I2S in dried blood spots sampled from affected patients and random newborns significantly increased the confidence in discriminating between these groups, clearly indicating the potential of the click-flip strategy to control the biomolecular function of carbohydrates.

4.
ACS Nano ; 12(12): 12814-12826, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30550257

RESUMEN

Prodrug strategies that facilitate localized and controlled activity of small-molecule therapeutics can reduce systemic exposure and improve pharmacokinetics, yet limitations in activation chemistry have made it difficult to assign tunable multifunctionality to prodrugs. Here, we present the design and application of a modular small-molecule caging strategy that couples bioorthogonal cleavage with a self-immolative linker and an aliphatic anchor. This strategy leverages recently discovered in vivo catalysis by a nanoencapsulated palladium compound (Pd-NP), which mediates alloxylcarbamate cleavage and triggers release of the activated drug. The aliphatic anchor enables >90% nanoencapsulation efficiency of the prodrug, while also allowing >104-fold increased cytotoxicity upon prodrug activation. We apply the strategy to a prodrug formulation of monomethyl auristatin E (MMAE), demonstrating its ability to target microtubules and kill cancer cells only after selective activation by Pd-NP. Computational pharmacokinetic modeling provides a mechanistic basis for the observation that the nanotherapeutic prodrug strategy can lead to more selective activation in the tumor, yet in a manner that is more sensitive to variable enhanced permeability and retention (EPR) effects. Combination treatment with the nanoencapsulated MMAE prodrug and Pd-NP safely blocks tumor growth, especially when combined with a local radiation therapy regimen that is known to improve EPR effects, and represents a conceptual step forward in prodrug design.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Diseño de Fármacos , Fibrosarcoma/tratamiento farmacológico , Nanopartículas del Metal/química , Paladio/química , Profármacos/farmacología , Animales , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/síntesis química , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fibrosarcoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Profármacos/síntesis química , Profármacos/química
5.
Eur J Inorg Chem ; 2014(32): 5596-5602, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25866471

RESUMEN

The mixed-metal oxo clusters LnTi4O3(OiPr)2(OMc)11 (Ln = La, Ce; OMc = methacrylate), Ln2Ti6O6(OMc)18(HOiPr) (Ln = La, Ce, Nd, Sm) and Ln2Ti4O4(OMc)14(HOMc)2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA