Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39184296

RESUMEN

Although vibronic coupling phenomena have been recognized in the excite state dynamics of transition metal complexes, its impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor-acceptor complex featuring a cyclometalated Pt(ii) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(ii) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their π-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes.

2.
Nature ; 620(7975): 776-781, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468632

RESUMEN

Design-specific control over the transitions between excited electronic states with different spin multiplicities is of the utmost importance in molecular and materials chemistry1-3. Previous studies have indicated that the combination of spin-orbit and vibronic effects, collectively termed the spin-vibronic effect, can accelerate quantum-mechanically forbidden transitions at non-adiabatic crossings4,5. However, it has been difficult to identify precise experimental manifestations of the spin-vibronic mechanism. Here we present coherence spectroscopy experiments that reveal the interplay between the spin, electronic and vibrational degrees of freedom that drive efficient singlet-triplet conversion in four structurally related dinuclear Pt(II) metal-metal-to-ligand charge-transfer (MMLCT) complexes. Photoexcitation activates the formation of a Pt-Pt bond, launching a stretching vibrational wavepacket. The molecular-structure-dependent decoherence and recoherence dynamics of this wavepacket resolve the spin-vibronic mechanism. We find that vectorial motion along the Pt-Pt stretching coordinates tunes the singlet and intermediate-state energy gap irreversibly towards the conical intersection and subsequently drives formation of the lowest stable triplet state in a ratcheting fashion. This work demonstrates the viability of using vibronic coherences as probes6-9 to clarify the interplay among spin, electronic and nuclear dynamics in spin-conversion processes, and this could inspire new modular designs to tailor the properties of excited states.

3.
Dalton Trans ; 52(13): 4008-4016, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36880277

RESUMEN

Dinuclear d8 Pt(II) complexes, where two mononuclear square planar Pt(II) units are bridged in an "A-frame" geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal-metal-ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt(II) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(µ-8HQ)]2, where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered (3LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ)2] (3). The lengthened Pt-Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1-3 leads to an initially prepared excited state that relaxes within 15 ps to a 3LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations.

4.
Inorg Chem ; 62(7): 3248-3259, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36749829

RESUMEN

Four Cu(I) bis(phenanthroline) photosensitizers formulated from a new ligand structural motif (Cu1-Cu4) coded according to their 2,9-substituents were synthesized, structurally characterized, and fully evaluated using steady-state and time-resolved absorption and photoluminescence (PL) measurements as well as electrochemistry. The 2,9-disubstituted-3,4,7,8-tetramethyl-1,10-phenanthroline ligands feature the following six-membered ring systems prepared through photochemical synthesis: 4,4-dimethylcyclohexyl (1), tetrahydro-2H-pyran-4-yl (2), tetrahydro-2H-thiopyran-4-yl (3), and 4,4-difluorocyclohexyl (4). Universally, these Cu(I) metal-to-ligand charge transfer (MLCT) chromophores display excited-state lifetimes on the microsecond time scale at room temperature, including the three longest-lived homoleptic cuprous phenanthroline excited states measured to date in de-aerated CH2Cl2, τ = 2.5-4.3 µs. This series of molecules also feature high PL quantum efficiencies (ΦPL = 5.3-12% in CH2Cl2). Temperature-dependent PL lifetime experiments confirmed that all these molecules exhibit reverse intersystem crossing and display thermally activated delayed PL from a 1MLCT excited state lying slightly above the 3MLCT state, 1050-1490 cm-1. Ultrafast and conventional transient absorption measurements confirmed that the PL originates from the MLCT excited state, which remains sterically arrested, preventing an excessive flattening distortion even when dissolved in Lewis basic CH3CN. Combined PL and electrochemical data provided evidence that Cu1-Cu4 are highly potent photoreductants (Eox* = -1.73 to -1.62 V vs Fc+/0 in CH3CN), whose potentials are altered solely based on which heteroatoms or substituents are resident on the 2,9-appended ring derivatives. It is proposed that long-range electronic inductive effects are responsible for the systematic modulation observed in the PL spectra, excited-state lifetimes, and the ground state absorption spectra and redox potentials. Cu1-Cu4 quantitatively follow the energy gap law, correlating well with structurally related cuprous phenanthrolines and are also shown to triplet photosensitize the excited states of 9,10-diphenylanthracene with bimolecular rate constants ranging from 1.61 to 2.82 × 108 M-1 s-1. The ability to tailor both photophysical and electrochemical properties using long-range inductive effects imposed by the 2,9-ring platforms advocates new directions for future MLCT chromophore discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA