Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.286
Filtrar
1.
Mol Cancer ; 23(1): 187, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242519

RESUMEN

BACKGROUND: The plasma concentrations of acyl coenzyme A binding protein (ACBP, also known as diazepam-binding inhibitor, DBI, or 'endozepine') increase with age and obesity, two parameters that are also amongst the most important risk factors for cancer. METHODS: We measured ACBP/DBI in the plasma from cancer-free individuals, high-risk patients like the carriers of TP53 or BRCA1/2 mutations, and non-syndromic healthy subjects who later developed cancer. In mice, the neutralization of ACBP/DBI was used in models of non-small cell lung cancer (NSCLC) and breast cancer development and as a combination treatment with chemoimmunotherapy (chemotherapy + PD-1 blockade) in the context of NSCLC and sarcomas. The anticancer T cell response upon ACBP/DBI neutralization was characterized by flow cytometry and single-cell RNA sequencing. RESULTS: Circulating levels of ACBP/DBI were higher in patients with genetic cancer predisposition (BRCA1/2 or TP53 germline mutations) than in matched controls. In non-syndromic cases, high ACBP/DBI levels were predictive of future cancer development, and especially elevated in patients who later developed lung cancer. In preclinical models, ACBP/DBI neutralization slowed down breast cancer and NSCLC development and enhanced the efficacy of chemoimmunotherapy in NSCLC and sarcoma models. When combined with chemoimmunotherapy, the neutralizing monoclonal antibody against ACBP/DBI reduced the frequency of regulatory T cells in the tumor bed, modulated the immune checkpoint profile, and increased activation markers. CONCLUSION: These findings suggest that ACBP/DBI acts as an endogenous immune suppressor. We conclude that elevation of ACBP/DBI constitutes a risk factor for the development of cancer and that ACBP/DBI is an actionable target for improving cancer immunosurveillance.


Asunto(s)
Biomarcadores de Tumor , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Vigilancia Inmunológica , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/etiología , Factores de Riesgo
2.
Autophagy ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265636

RESUMEN

DBI/ACBP (diazepam binding inhibitor, acyl-CoA binding protein) is produced by multiple cell types and detectable in blood plasma. DBI acts on GABRA (gamma-aminobutyric acid type A receptor) complexes containing GABRG2 (gamma-aminobutyric acid type A receptor, subunit gamma 2) to inhibit macroautophagy/autophagy and hence can be considered as an "autophagy checkpoint". In patients with poor-prognosis anorexia nervosa, as well as in mice developing stress-induced anorexia, circulating DBI levels are reduced. Using a chemical-genetic system that makes it possible to control DBI secretion by hepatocytes, we showed that increasing DBI levels suffice to prevent anorexia induced by chronic restraint stress or chemotherapy with cisplatin, doxorubicin or paclitaxel in mice. At the mechanistic level, DBI administration acts through GABRA outside of the central nervous system and reduces the plasma levels of anorexigenic factors such as GDF15 (growth differentiation factor 15) and LCN2 (lipocalin 2), as well as anorexigenic signaling via the LCN2 receptor MC4R (melanocortin 4 receptor) in the hypothalamus. Accordingly, DBI supplementation stimulates food intake and normalizes whole body weight, body composition and metabolism in mouse models of anorexia. This normalization extends to the liver transcriptome and metabolome. Altogether, it appears that enhancing DBI levels constitutes a promising strategy for combating anorexia.

3.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39201522

RESUMEN

Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.


Asunto(s)
Neoplasias Colorrectales , Obesidad , Humanos , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/patología , Obesidad/complicaciones , Obesidad/metabolismo , Factores de Riesgo , Animales
4.
Autophagy ; : 1-3, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39212197

RESUMEN

Acute nutrient deprivation (fasting) causes an immediate increase in spermidine biosynthesis in yeast, flies, mice and humans, as corroborated in four independent clinical studies. This fasting-induced surge in spermidine constitutes the critical first step of a phylogenetically conserved biochemical cascade that leads to spermidine-dependent hypusination of EIF5A (eukaryotic translation initiation factor 5A), which favors the translation of the pro-macroautophagic/autophagic TFEB (transcription factor EB), and hence an increase in autophagic flux. We observed that genetic or pharmacological inhibition of the spermidine increase by inhibition of ODC1 (ornithine decarboxylase 1) prevents the pro-autophagic and antiaging effects of fasting in yeast, nematodes, flies and mice. Moreover, knockout or knockdown of the enzymes required for EIF5A hypusination abolish fasting-mediated autophagy enhancement and longevity extension in these organisms. Of note, autophagy and longevity induced by rapamycin obey the same rule, meaning that they are tied to an increase in spermidine synthesis. These findings indicate that spermidine is not only a "caloric restriction mimetic" in the sense that its supplementation mimics the beneficial effects of nutrient deprivation on organismal health but that it is also an obligatory downstream effector of the antiaging effects of fasting and rapamycin.Abbreviation: EIF5A: eukaryotic translation initiation factor 5A; IGF1: insulin like growth factor 1; MTOR: mechanistic target of rapamycin kinase; ODC1: ornithine decarboxylase 1; TFEB: transcription factor EB.

5.
Immunity ; 57(9): 2013-2029, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151425

RESUMEN

The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.


Asunto(s)
Microbioma Gastrointestinal , Vigilancia Inmunológica , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Microbioma Gastrointestinal/inmunología , Animales , Vigilancia Inmunológica/inmunología , Inmunoterapia/métodos , Monitorización Inmunológica
6.
Cardiovasc Res ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172536

RESUMEN

As the global demographic landscape continues to shift towards an aged population, so does the medical and socioeconomic burden of cardiovascular diseases. Indeed, ageing is one of, if not the, key risk factor for the development of cardiovascular diseases. However, there are currently no approved cardiovascular therapeutics that primarily target the molecular and cellular mechanisms underlying the ageing process itself. In this review, we present the potential of emerging anti-ageing strategies, including epigenetic rejuvenation, metabolic reprogramming, autophagy activation, as well as senolytic and anti-inflammatory therapies, in delaying or reversing the development of age-related cardiovascular disorders, while considering potential sex differences. In doing so, we implicate cellular ageing processes in the pathogenesis of several prevalent cardiovascular diseases, such as atherosclerosis, hypertension, various types of cardiomyopathies (including its hypertrophic, ischemic, dilated, diabetic, and arrhythmogenic forms) and heart failure, particularly that with preserved ejection fraction. Finally, we outline future challenges and steps needed for the implementation of these novel anti-ageing strategies in the clinical setting, with the aim of challenging the long-held notion of ageing as a 'nonmodifiable' risk factor for cardiovascular diseases.

7.
Sci Transl Med ; 16(760): eadl0715, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141698

RESUMEN

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.


Asunto(s)
Anorexia , Inhibidor de la Unión a Diazepam , Animales , Inhibidor de la Unión a Diazepam/metabolismo , Anorexia/tratamiento farmacológico , Anorexia/metabolismo , Humanos , Ratones Transgénicos , Ratones , Anorexia Nerviosa/metabolismo , Anorexia Nerviosa/tratamiento farmacológico , Lipocalina 2/metabolismo , Lipocalina 2/sangre , Hipotálamo/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL , Restricción Física , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos
8.
Metabolism ; 158: 155973, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986805

RESUMEN

In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.


Asunto(s)
ATPasas Transportadoras de Cobre , Cobre , Degeneración Hepatolenticular , Mucosa Intestinal , Ratones Noqueados , Degeneración Hepatolenticular/metabolismo , Degeneración Hepatolenticular/patología , Degeneración Hepatolenticular/tratamiento farmacológico , Animales , Humanos , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Ratas , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Masculino , Células CACO-2 , Femenino , Adulto , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Intestinos/patología , Intestinos/efectos de los fármacos , Adulto Joven
9.
Oncoimmunology ; 13(1): 2385124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076248

RESUMEN

Doxorubicin is a prototypical inducer of immunogenic cell death (ICD) that sensitizes to subsequent immunotherapy by PD-1 blockade. However, this systemic drug combination fails against glioblastoma, hidden behind the blood-brain barrier (BBB). A recent work delineates a biophysical method for BBB permeabilization that yields effective preclinical effects of chemoimmunotherapy.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Glioblastoma , Inmunoterapia , Receptor de Muerte Celular Programada 1 , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/inmunología , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/administración & dosificación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
10.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906102

RESUMEN

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Inmunoterapia , Neoplasias Pulmonares , Neoplasias , Femenino , Humanos , Masculino , Akkermansia , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Disbiosis/microbiología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/tratamiento farmacológico , Metagenómica/métodos , Neoplasias/microbiología , Resultado del Tratamiento
11.
Nat Protoc ; 19(9): 2540-2570, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38769145

RESUMEN

Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.


Asunto(s)
Inmunoterapia , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Animales , Viroterapia Oncolítica/métodos , Inmunoterapia/métodos , Ratones
12.
Cell Stress ; 8: 51-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800095

RESUMEN

In a recent issue in Nature Cell Biology, Sung Min Son et al. unveil a novel layer in the regulation of the mTORC1/autophagy axis by EP300 which can undergo nucleocytoplasmic shuttling in response to alterations in nutrient availability. The study highlights that, in Hutchinson-Gilford progeria syndrome, overabundant cytoplasmic EP300 results in mTORC1 hyperactivation and impaired autophagy, potentially contributing to premature and accelerated aging.

14.
Mol Cancer ; 23(1): 106, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760832

RESUMEN

Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.


Asunto(s)
Envejecimiento , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/etiología , Animales , Susceptibilidad a Enfermedades , Factores de Riesgo
15.
Oncoimmunology ; 13(1): 2360275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812570
17.
Nat Rev Drug Discov ; 23(6): 445-460, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38622310

RESUMEN

Immunogenic cell death (ICD), which results from insufficient cellular adaptation to specific stressors, occupies a central position in the development of novel anticancer treatments. Several therapeutic strategies to elicit ICD - either as standalone approaches or as means to convert immunologically cold tumours that are insensitive to immunotherapy into hot and immunotherapy-sensitive lesions - are being actively pursued. However, the development of ICD-inducing treatments is hindered by various obstacles. Some of these relate to the intrinsic complexity of cancer cell biology, whereas others arise from the use of conventional therapeutic strategies that were developed according to immune-agnostic principles. Moreover, current discovery platforms for the development of novel ICD inducers suffer from limitations that must be addressed to improve bench-to-bedside translational efforts. An improved appreciation of the conceptual difference between key factors that discriminate distinct forms of cell death will assist the design of clinically viable ICD inducers.


Asunto(s)
Muerte Celular Inmunogénica , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Muerte Celular Inmunogénica/efectos de los fármacos , Animales , Inmunoterapia/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Muerte Celular/inmunología
18.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582872

RESUMEN

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Asunto(s)
Inhibidor de la Unión a Diazepam , Ácido gamma-Aminobutírico , Animales , Ratones , Inhibidor de la Unión a Diazepam/farmacología
19.
Cancer Discov ; 14(4): 658-662, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571436

RESUMEN

SUMMARY: Pathogenic shifts in the gut microbiota are part of the "ecological" alterations that accompany tumor progression and compromise immunosurveillance. The future management of health and disease including cancer will rely on the diagnosis of such shifts and their therapeutic correction by general or personalized strategies, hence restoring metaorganismal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Homeostasis
20.
Oncoimmunology ; 13(1): 2338951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590800

RESUMEN

Recently, we showed that an autologous DC-based vaccine induces an increase in immunosuppressive PD-L1+ tumor-associated macrophages (TAM) both in the tumor and the tumor draining lymph nodes, thereby blunting the efficacy of therapeutic immunization. Only the combination of the DC vaccine with anti-PD-L1 immune checkpoint inhibition, but not the use of antibodies targeting PD-1 alone, was able to set off CD8+ cytotoxic T lymphocyte (CTL)-mediated tumor suppression in mice. In sum, we delineated a PD-L1 checkpoint blockade-based strategy to avoid TAM-induced T cell exhaustion during DC vaccine therapy.


Asunto(s)
Antígeno B7-H1 , Vacunas , Animales , Ratones , Linfocitos T Citotóxicos , Linfocitos T CD8-positivos , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA