Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISME J ; 15(3): 658-672, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33082572

RESUMEN

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


Asunto(s)
Bosque Lluvioso , Suelo , Brasil , Metano , Microbiología del Suelo
2.
Environ Int ; 145: 106131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979812

RESUMEN

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 µg CH4 m-2 d-1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 µg CH4 m-2 d-1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: -10.2 ± 35.7 µg CH4 m-2 d-1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.


Asunto(s)
Metano , Suelo , Animales , Brasil , Bovinos , Bosques , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA