Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(9): pgad289, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37746327

RESUMEN

We show through simulations of amorphous solids prepared in open-boundary conditions that they possess significantly fewer low-frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational density of states, we find that the D(ω)∼ω4 law changes to D(ω)∼ωδ with δ≈5 in two dimensions and δ≈4.5 in three dimensions. Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an anharmonic analysis of the minima corresponding to the lowest frequency modes in such open-boundary systems and discuss their correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system, which are absent in the unconfined system and find that the D(ω)∼ω4 behavior is recovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA