Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361579

RESUMEN

The kesterite Cu2ZnGeS4 (CZGS) has recently gained significant interest in the scientific community. In this work, we investigated the thermodynamic and thermoelectric properties of CZGS by employing the first-principals calculation in association with the quasi-harmonic approximation, Boltzmann transport theory, deformation potential theory, and slack model. We obtained a bandgap of 2.05 eV and high carrier mobility. We found that CZGS exhibits adequate thermoelectric properties as a promising material for thermoelectric applications. The calculated Seebeck coefficient at room temperature is 149 µV·K-1. We also determined the thermal and electrical conductivity, the power factor, and the figure of merit. In addition, the thermodynamic properties such as Debye temperature, entropy, and constant volume heat capacity are estimated. According to our results, it is concluded that the Slack model fails to provide correct values for lattice thermal conductivity in this material.


Asunto(s)
Sulfuros , Termodinámica
2.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34685133

RESUMEN

Following the chronological stages of calculations imposed by the WIEN2K code, we have performed a series of density functional theory calculations, from which we were able to study the effect of strain on the kesterite structures for two quaternary semiconductor compounds Cu2ZnGeS4 and Cu2ZnGeSe4. Remarkable changes were found in the electronic and optical properties of these two materials during the application of biaxial strain. Indeed, the band gap energy of both materials decreases from the equilibrium state, and the applied strain is more pronounced. The main optical features are also related to the applied strain. Notably, we found that the energies of the peaks present in the dielectric function spectra are slightly shifted towards low energies with strain, leading to significant refraction and extinction index responses. The obtained results can be used to reinforce the candidature of Cu2ZnGeX4(X = S, Se) in the field of photovoltaic devices.

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201009

RESUMEN

We have studied the parallel and perpendicular electric field effects on the system of SiGe prolate and oblate quantum dots numerically, taking into account the wetting layer and quantum dot size effects. Using the effective-mass approximation in the two bands model, we computationally calculated the extensive variation of dipole matrix (DM) elements, bandgap and non-linear optical properties, including absorption coefficients, refractive index changes, second harmonic generation and third harmonic generation as a function of the electric field, wetting layer size and the size of the quantum dot. The redshift is observed for the non-linear optical properties with the increasing electric field and an increase in wetting layer thickness. The sensitivity to the electric field toward the shape of the quantum dot is also observed. This study is resourceful for all the researchers as it provides a pragmatic model by considering oblate and prolate shaped quantum dots by explaining the optical and electronic properties precisely, as a consequence of the confined stark shift and wetting layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA