Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 46(30): 9981-9994, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28726953

RESUMEN

In the present work, the complexation and extraction behaviour of 4,4'di-tert-butyl-6-(1H-tetrazol-5-yl)-2,2'-bipyridine (HN4tbubipy) towards trivalent actinides (An(iii)) and lanthanides (Ln(iii)) is studied by spectroscopic methods, liquid-liquid extraction, and quantum chemical calculations. The ligand synthesis of HN4tbubipy as well as its application in coordination chemistry of the 4f elements is described. Reaction of HN4tbubipy with [Ln(NO3)3·6H2O] (Ln = Sm, Eu) results in [H2N4tbubipy]+[Ln(N4tbubipy)(NO3)3(H2O)]-. Both compounds have been characterized by single crystal X-ray diffraction. The solubility of the ligand in different organic solvents is determined, showing a high solubility in MeOH which decreases with the lipophilicity of the solvent. The pKa = 2.4 ± 0.2 of HN4tbubipy in EtOH (4.4 vol% H2O) is determined by absorption spectrophotometry. The complexation of Cm(iii) and Eu(iii) with HN4tbubipy is studied by time resolved laser fluorescence spectroscopy (TRLFS). For both metal ions the formation of the complexes [M(N4tbubipy)n]3-n with n = 2, 3 (M = Cm(iii), Eu(iii)) is observed. Slightly higher conditional stability constants for Eu(iii) (log ß'2(Eu(N4tbubipy)2+) = 8.9 ± 0.3, log ß'3(Eu(N4tbubipy)3) = 12.7 ± 0.5), compared to Cm(iii) (log ß'2(Cm(N4tbubipy)2+) = 8.5 ± 0.4 and log ß'3(Cm(N4tbubipy)3) = 12.4 ± 0.6) are determined. Thus, the ligand has no preference for the complexation of An(iii) over Ln(iii). Additionally, no significant extraction of Am(iii) and Eu(iii) is observed in liquid-liquid extraction experiments due to protonation of the ligand at the experimental conditions. The experimental studies are supported by quantum chemical calculations of the free ligand and the [M(N4tbubipy)3] complexes (M = Cm(iii), Gd(iii)). The results are in excellent agreement with the experimental data and provide a deeper understanding of the complexation properties of HN4tbubipy.

2.
Inorg Chem ; 53(17): 8949-58, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-24967733

RESUMEN

The coordination structure in the solid state and solution complexation behavior of 6-(tetrazol-5-yl)-2,2'-bipyridine (HN4bipy) with samarium(III) was investigated as a model system for actinide(III)/lanthanide(III) separations. Two different solid 1:2 complexes, [Sm(N4bipy)2(OH)(H2O)2] (1) and [Sm(N4bipy)2(HCOO)(H2O)2] (2), were obtained from the reaction of samarium(III) nitrate with HN4bipy in isopropyl alcohol, resuspension in N,N-dimethylformamide (DMF), and slow crystallization. The formate anion coordinated to samarium in 2 is formed by decomposition of DMF to formic acid and dimethylamine. Time-resolved laser fluorescence spectroscopy (TRLFS) studies were performed with curium(III) and europium(III) by using HN4bipy as the ligand. Curium(III) is observed to form 1:2 and 1:3 complexes with increasing HN4bipy concentration; for europium(III), formation of 1:1 and 1:3 complexes is observed. Although the solid-state samarium complexes were confirmed as 1:2 species the 1:2 europium(III) solution complex in ethanol was not identified with TRLFS. The determined conditional stability constant for the 1:3 fully coordinated curium(III) complex species is more than 2 orders of magnitude higher than that for europium(III) (log ß3[Cm(N4bipy)3] = 13.8 and log ß3[Eu(N4bipy)3] = 11.1). The presence of added 2-bromodecanoic acid as a lipophilic anion source reduces the stability constant for formation of the 1:2 and 1:3 curium(III) complexes, but no ternary complexes were observed. The stability constants for the 1:3 metal ion-N4bipy complexes equate to a theoretical separation factor, SF(Cm(III)/Eu(III)) ≈ 500. However, the low solubility of the HN4bipy ligand in nonpolar solvents typically used in actinide-lanthanide liquid-liquid extractions prevents its use as a partitioning extractant until a more lipophilic HN4bipy-type ligand is developed.

3.
Angew Chem Int Ed Engl ; 53(2): 376-83, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24395606

RESUMEN

Transition-metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare-earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare-earth-metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.

4.
Chemistry ; 18(45): 14454-63, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23015310

RESUMEN

The treatment of the recently reported potassium salt (S)-N,N'-bis-(1-phenylethyl)benzamidinate ((S)-KPEBA) and its racemic isomer (rac-KPEBA) with anhydrous lanthanide trichlorides (Ln = Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)-PEBA}(3)Sm], bis(amidinate) complexes [{Ln(PEBA)(2)(µ-Cl)}(2)] (Ln = Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)(2)(thf)(n)] (Ln = Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)-amido complexes [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were synthesized by an amine-elimination reaction and salt metathesis. All of these chiral bis- and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac-PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)-PEBA}(2)Ln{N(SiMe(3))(2)}] (Ln = Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA