Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 53(8): 1725-6; author reply 1726-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16916112

RESUMEN

Medical intervention by electrical current as applied to humans or animals may have tremendous therapeutic impact if delivered while being carefully controlled. Otherwise, the situation can be harmful in terms of injury or even become lethal. These consequences demand close inspection of all relevant biological and technical factors. Regarding methods to counter fibrillation of the heart substantial progress has been made, but defining a gold standard for the waveshape and energy delivery remains a serious challenge. The anticipated answer is not simply a range somewhere between a maximum and a minimum, but most likely an "intelligently" selected case-specific optimum, delicately positioned between effective and unsafe. Combining insight from theory with pertinent experimental findings may offer a clearer view on an unresolved issue that often points to a cross-road of life and death.


Asunto(s)
Cardioversión Eléctrica/métodos , Medicina Basada en la Evidencia/métodos , Sistema de Conducción Cardíaco/fisiopatología , Modelos Cardiovasculares , Terapia Asistida por Computador/métodos , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/terapia , Animales , Simulación por Computador , Cobayas , Ventrículos Cardíacos/fisiopatología , Masculino , Resultado del Tratamiento
2.
Biomed Eng Online ; 1: 7, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12537593

RESUMEN

BACKGROUND: Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. METHOD AND RESULTS: Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. CONCLUSION: The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.


Asunto(s)
Simulación por Computador , Cardioversión Eléctrica/instrumentación , Cardioversión Eléctrica/métodos , Electrodos , Modelos Teóricos , Quemaduras por Electricidad/etiología , Gráficos por Computador , Conductividad Eléctrica , Cardioversión Eléctrica/efectos adversos , Impedancia Eléctrica , Campos Electromagnéticos , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Contracción Muscular , Dolor/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA