Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511602

RESUMEN

Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.


Asunto(s)
Proteínas de Drosophila , Receptores de Esteroides , Animales , Drosophila/genética , Drosophila/metabolismo , Ecdisona , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisterona/farmacología , Ecdisterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Activación Transcripcional , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
2.
Insect Biochem Mol Biol ; 112: 103184, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31295549

RESUMEN

The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Esteroides/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisterona/farmacología , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/genética , Receptores de Esteroides/genética
3.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 178-189, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29410380

RESUMEN

Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.


Asunto(s)
Drosophila melanogaster/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Ecdisona/farmacología , Modelos Genéticos , Unión Proteica , Interferencia de ARN , ARN Polimerasa II/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
4.
Cell Stress Chaperones ; 21(6): 1055-1064, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27511022

RESUMEN

The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Leche/metabolismo , Animales , Femenino , Proteínas HSP70 de Choque Térmico/genética , Humanos , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Replegamiento Proteico , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
5.
Cell Biosci ; 6: 15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913181

RESUMEN

Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators.

6.
Cell Cycle ; 14(22): 3593-601, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26506480

RESUMEN

The DHR3 and Hr4 early-late genes of the ecdysone cascade are described as models for transcriptional studies in Drosophila cells. In a set of experiments, it became clear that these genes are a convenient and versatile system for research into the physiological conditions upon 20-hydroxyecdysone induction. DHR3 and Hr4 gene transcription is characterized by fast activation kinetics, which enables transcriptional studies without the influence of indirect effects. A limited number of activated genes (only 73 genes are induced one hour after treatment) promote the selectivity of transcriptional studies via 20-hydroxyecdysone induction. DHR3 and Hr4 gene expression is dose dependent, is completely controlled by the hormone titer and decreases within hours of 20-hydroxyecdysone withdrawal. The DHR3 and Hr4 gene promoters become functional within 20 minutes after induction, which makes them useful tools for investigation if the early activation process. Their transcription is controlled by the RNA polymerase II pausing mechanism, which is widespread in the genome of Drosophila melanogaster but is still underinvestigated. Uniform expression activation of the DHR3 and Hr4 genes in a cell population was confirmed at both the RNA and protein levels. Homogeneity of the transcription response makes DHR3/Hr4 system valuable for investigation of the protein dynamics during transcription induction.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisterona/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
7.
Nucleic Acids Res ; 41(11): 5717-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609538

RESUMEN

Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding. Depletion in Su(Hw) leads to a dramatic drop in the levels of SAGA, Brahma and ORC subunits and a significant increase in nucleosome density on Su(Hw)-dependent insulators, whereas artificial Su(Hw) recruitment itself is sufficient for subsequent SAGA, Brahma and ORC binding. In contrast to the majority of replication origins that associate with promoters of active genes, Su(Hw)-binding sites constitute a small proportion (6%) of ORC-binding sites that are localized preferentially in transcriptionally inactive chromatin regions termed BLACK and BLUE chromatin. We suggest that the key determinants of ORC positioning in the genome are DNA-binding proteins that constitute different DNA regulatory elements, including insulators, promoters and enhancers. Su(Hw) is the first example of such a protein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Histona Acetiltransferasas/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión , Línea Celular , Ensamble y Desensamble de Cromatina , Drosophila/enzimología , Drosophila/metabolismo , Genoma de los Insectos , Proteínas del Grupo de Alta Movilidad/metabolismo , Elementos Aisladores , Nucleosomas/metabolismo
8.
Mol Cell Biol ; 26(20): 7492-505, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17015475

RESUMEN

The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes.


Asunto(s)
Diferenciación Celular , Cromatina/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Células Germinativas/citología , Meiosis , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Masculino , Peso Molecular , Mutación/genética , Sistemas de Lectura Abierta/genética , Unión Proteica , Biosíntesis de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Espermatogénesis , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Transcripción Genética/genética
9.
Proc Natl Acad Sci U S A ; 102(50): 18087-92, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16330756

RESUMEN

The presence of general transcription factors and other coactivators at the Drosophila hsp70 gene promoter in vivo has been examined by polytene chromosome immunofluorescence and chromatin immunoprecipitation at endogenous heat-shock loci or at a hsp70 promoter-containing transgene. These studies indicate that the hsp70 promoter is already occupied by TATA-binding protein (TBP) and several TBP-associated factors (TAFs), TFIIB, TFIIF (RAP30), TFIIH (XPB), TBP-free/TAF-containg complex (GCN5 and TRRAP), and the Mediator complex subunit 13 before heat shock. After heat shock, there is a significant recruitment of the heat-shock transcription factor, RNA polymerase II, XPD, GCN5, TRRAP, or Mediator complex 13 to the hsp70 promoter. Surprisingly, upon heat shock, there is a marked diminution in the occupancy of TBP, six different TAFs, TFIIB, and TFIIF, whereas there is no change in the occupancy of these factors at ecdysone-induced loci under the same conditions. Hence, these findings reveal a distinct mechanism of transcriptional induction at the hsp70 promoters, and further indicate that the apparent promoter occupancy of the general transcriptional factors does not necessarily reflect the transcriptional state of a gene.


Asunto(s)
Drosophila/genética , Proteínas HSP70 de Choque Térmico/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Animales , Inmunoprecipitación de Cromatina , Cartilla de ADN , Técnica del Anticuerpo Fluorescente Indirecta , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional/fisiología
10.
Nucleic Acids Res ; 33(20): 6654-61, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16314324

RESUMEN

The e(y)2 gene of Drosophila melanogaster encodes the ubiquitous evolutionarily conserved co-activator of RNA polymerase II that is involved in transcription regulation of a high number of genes. The Drosophila e(y)2b gene, paralogue of the e(y)2 has been found. The analysis of structure of the e(y)2, e(y)2b and its orthologues from other species reveals that the e(y)2 gene derived as a result of retroposition of the e(y)2b during Drosophila evolution. The mRNA-derived retrogenes lack introns or regulatory regions; most of them become pseudogenes whereas some acquire tissue-specific functions. Here we describe the different situation: the e(y)2 retrogene performs the general function and is ubiquitously expressed, while the source gene is functional only in a small group of male germ cells. This must have resulted from retroposition into a transcriptionally favorable region of the genome.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Exones , Genes de Insecto , Genómica , Intrones , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Análisis de Secuencia de Proteína , Espermatocitos/metabolismo , Distribución Tisular , Factores de Transcripción/metabolismo
11.
EMBO J ; 24(1): 97-107, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15616585

RESUMEN

Enhancers of yellow (e(y)) is a group of genetically and functionally related genes for proteins involved in transcriptional regulation. The e(y)3 gene of Drosophila considered here encodes a ubiquitous nuclear protein that has homologues in other metazoan species. The protein encoded by e(y)3, named Supporter of Activation of Yellow Protein (SAYP), contains an AT-hook, two PHD fingers, and a novel evolutionarily conserved domain with a transcriptional coactivator function. Mutants expressing a truncated SAYP devoid of the conserved domain die at a midembryonic stage, which suggests a crucial part for SAYP during early development. SAYP binds to numerous sites of transcriptionally active euchromatin on polytene chromosomes and coactivates transcription of euchromatin genes. Unexpectedly, SAYP is also abundant in the heterochromatin regions of the fourth chromosome and in the chromocenter, and represses the transcription of euchromatin genes translocated to heterochromatin; its PHD fingers are essential to heterochromatic silencing. Thus, SAYP plays a dual role in transcription regulation in euchromatic and heterochromatic regions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Genes Reporteros , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Transgenes , Técnicas del Sistema de Dos Híbridos
12.
Biotechniques ; 32(2): 300, 302-4, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11848406

RESUMEN

We describe a novel and handy method for generating a population of templates for sequencing. The method is based on the random insertion of antibiotic resistance gene in plasmid DNA digested by DNase I. The advantages of this approach are the small quantity of DNA necessary for mutagenesis and the complete independence from the restriction map of the plasmid. DNase I digestion provides a random distribution of the insertions, while antibiotic selection provides low background. We also present a convenient PCR-based procedure for the analysis and ordering of obtained insertion mutants.


Asunto(s)
Resistencia a la Kanamicina/genética , Análisis de Secuencia de ADN/métodos , Moldes Genéticos , Mutagénesis Insercional , Plásmidos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA