Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 19(26): e2208055, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949498

RESUMEN

Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y3 Al5 O12 :Ce3+ , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO4 -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO4 and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.

2.
Biology (Basel) ; 12(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671752

RESUMEN

Modern urban human activities are largely restricted to the indoors, deprived of direct sunlight containing visible and near-infrared (NIR) wavelengths at high irradiance levels. Therapeutic exposure to doses of red and NIR, known as photobiomodulation (PBM), has been effective for a broad range of conditions. In a double-blind, randomized, placebo-controlled study, we aimed to assess the effects of a PBM home set-up on various aspects of well-being, health, sleep, and circadian rhythms in healthy human subjects with mild sleep complaints. The effects of three NIR light (850 nm) doses (1, 4, or 6.5 J·cm-2) were examined against the placebo. Exposure was presented five days per week between 9:30 am and 12:30 pm for four consecutive weeks. The study was conducted in both summer and winter to include seasonal variation. The results showed PBM treatment only at 6.5 J·cm-2 to have consistent positive benefits on well-being and health, specifically improving mood, reducing drowsiness, reducing IFN-γ, and resting heart rate. This was only observed in winter. No significant effects on sleep or circadian rhythms were noted. This study provides further evidence that adequate exposure to NIR, especially during low sunlight conditions, such as in the winter, can be beneficial for human health and wellness.

3.
ACS Photonics ; 8(6): 1784-1793, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34164566

RESUMEN

Commercial lighting for ambient and display applications is mostly based on blue light-emitting diodes (LEDs) combined with phosphor materials that convert some of the blue light into green, yellow, orange, and red. Not many phosphor materials can offer stable output under high incident light intensities for thousands of operating hours. Even the most promising LED phosphors saturate in high-power applications, that is, they show decreased light output. The saturation behavior is often poorly understood. Here, we review three popular commercial LED phosphor materials, Y3Al5O12 doped with Ce3+, CaAlSiN3 doped with Eu2+, and K2SiF6 doped with Mn4+, and unravel their saturation mechanisms. Experiments with square-wave-modulated laser excitation reveal the dynamics of absorption and decay of the luminescent centers. By modeling these dynamics and linking them to the saturation of the phosphor output intensity, we distinguish saturation by ground-state depletion, thermal quenching, and ionization of the centers. We discuss the implications of each of these processes for LED applications. Understanding the saturation mechanisms of popular LED phosphors could lead to strategies to improve their performance and efficiency or guide the development of new materials.

4.
Chem Rev ; 120(24): 13461-13479, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33164489

RESUMEN

The renowned yellow phosphor yttrium aluminum garnet (YAG) doped with trivalent cerium has found its way into applications in many forms: as powder of micron sized crystals, as a ceramic, and even as a single crystal. However, additional technological advancement requires providing this material in new form factors, especially in terms of particle size. Where many materials have been developed on the nanoscale with excellent optical properties (e.g., semiconductor quantum dots, perovskite nanocrystals, and rare earth doped phosphors), it is surprising that the development of nanocrystalline YAG:Ce is not as mature as for these other materials. Control over size and shape is still in its infancy, and optical properties are not yet at the same level as other materials on the nanoscale, even though YAG:Ce microcrystalline materials exceed the performance of most other materials. This review highlights developments in synthesis methods and mechanisms and gives an overview of the state of the art morphologies, particle sizes, and optical properties of YAG:Ce on the nanoscale.

5.
J Phys Chem Lett ; 11(3): 689-695, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31922751

RESUMEN

Phosphors have been used successfully for both research and commercial applications for decades. Eu3+-doped materials are especially promising, because of their extremely stable, efficient, and narrow red emission lines. Although these emission properties are ideal for lighting applications, weak absorption in the blue spectral range has until now prevented the use of Eu3+-based phosphors in applications based on blue light-emitting diodes. Here, we demonstrate a sensitization mechanism of Eu3+ based on interparticle Förster resonance energy transfer (IFRET) between lanthanide-doped inorganic nanocrystals (NCs). Compared to co-doping different lanthanides in the same host crystal, IFRET allows an independent choice of host lattices for Eu3+ and its sensitizer while potentially greatly reducing metal-to-metal charge transfer quenching. We demonstrate IFRET between NCs, resulting in red Eu3+ emission upon blue excitation at 485 nm using LaPO4:Tb/LaPO4:Eu and LaPO4:Tb/YVPO4:Eu NC mixtures. These findings pave the way toward engineering blue-sensitized line emitters for solid-state lighting applications.

6.
Opt Express ; 21(14): 16702-15, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23938522

RESUMEN

We study the quantification of whiteness perception under illumination from various light sources. We discuss an existing metric for sources with high correlated color temperature (CCT), CIE whiteness, and propose a procedure to adapt it to sources of any CCT. We illustrate our approach by comparing the ability of different warm-white sources to render whiteness. We show that a careful engineering of the spectrum -facilitated by the flexibility of light-emitting diode sources - is essential to render whiteness.


Asunto(s)
Color , Diseño Asistido por Computadora , Iluminación/instrumentación , Modelos Teóricos , Semiconductores , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación , Temperatura
7.
Opt Express ; 21(8): 10393-411, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609750

RESUMEN

Twenty-two measures of color rendition have been reviewed and summarized. Each measure was computed for 401 illuminants comprising incandescent, light-emitting diode (LED) -phosphor, LED-mixed, fluorescent, high-intensity discharge (HID), and theoretical illuminants. A multidimensional scaling analysis (Matrix Stress = 0.0731, R(2) = 0.976) illustrates that the 22 measures cluster into three neighborhoods in a two-dimensional space, where the dimensions relate to color discrimination and color preference. When just two measures are used to characterize overall color rendition, the most information can be conveyed if one is a reference-based measure that is consistent with the concept of color fidelity or quality (e.g., Q(a)) and the other is a measure of relative gamut (e.g., Q(g)).


Asunto(s)
Algoritmos , Color , Colorimetría/instrumentación , Colorimetría/métodos , Iluminación/instrumentación , Iluminación/métodos , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA