Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(6): 063205, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481281

RESUMEN

We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X[over ˜]^{2}Σ^{+}↔A[over ˜]^{2}Π_{1/2} electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

2.
Phys Rev Lett ; 118(17): 173201, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498706

RESUMEN

We perform magnetically assisted Sisyphus laser cooling of the triatomic free radical strontium monohydroxide (SrOH). This is achieved with principal optical cycling in the rotationally closed P(N^{''}=1) branch of either the X[over ˜]^{2}Σ^{+}(000)↔A[over ˜]^{2}Π_{1/2}(000) or the X[over ˜]^{2}Σ^{+}(000)↔B[over ˜]^{2}Σ^{+}(000) vibronic transitions. Molecules lost into the excited vibrational states during the cooling process are repumped back through the B[over ˜](000) state for both the (100) level of the Sr-O stretching mode and the (02^{0}0) level of the bending mode. The transverse temperature of a SrOH molecular beam is reduced in one dimension by 2 orders of magnitude to ∼750 µK. This approach opens a path towards creating a variety of ultracold polyatomic molecules by means of direct laser cooling.

3.
Phys Rev Lett ; 119(13): 133002, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341669

RESUMEN

Precision searches for time-reversal symmetry violating interactions in polar molecules are extremely sensitive probes of high energy physics beyond the standard model. To extend the reach of these probes into the PeV regime, long coherence times and large count rates are necessary. Recent advances in laser cooling of polar molecules offer one important tool-optical trapping. However, the types of molecules that have been laser cooled so far do not have the highly desirable combination of features for new physics searches, such as the ability to fully polarize and the existence of internal comagnetometer states. We show that by utilizing the internal degrees of freedom present only in molecules with at least three atoms, these features can be attained simultaneously with molecules that have simple structure and are amenable to laser cooling and trapping.

4.
Chemphyschem ; 17(22): 3641-3648, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27759904

RESUMEN

An experimentally feasible strategy for direct laser cooling of polyatomic molecules with six or more atoms is presented. Our approach relies on the attachment of a metal atom to a complex molecule, where it acts as an active photon cycling site. We describe a laser cooling scheme for alkaline earth monoalkoxide free radicals taking advantage of the phase space compression of a cryogenic buffer-gas beam. Possible applications are presented including laser cooling of chiral molecules and slowing of molecular beams using coherent photon processes.

5.
Adv Exp Med Biol ; 827: 367-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25387976

RESUMEN

A successful treatment of AIDS world-wide is severely hindered by the HIV virus' drug resistance capability resulting from complicated mutation patterns of viral proteins. Such a system of mutations enables the virus to survive and reproduce despite the presence of various antiretroviral drugs by disrupting their binding capability. Although these interacting mutation patterns are extremely difficult to efficiently uncover and interpret, they contribute valuable information to personalized therapeutic regimen design. The use of Bayesian statistical modeling provides an unprecedented opportunity in the field of anti-HIV therapy to understand detailed interaction structures of drug resistant mutations. Multiple Bayesian models equipped with Markov Chain Monte Carlo (MCMC) methods have been recently proposed in this field (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]; Svicher et al. in Antiviral Res 93(1):86-93, 2012 [3]; Svicher et al. in Antiviral Therapy 16(7):1035-1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14-A14, 2011 [5]; Svicher et al. in Antiviral Ther 16(4):A85-A85, 2011 [6]; Alteri et al. in Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]). Probabilistically modeling mutations in the HIV-1 protease or reverse transcriptase (RT) isolated from drug-treated patients provides a powerful statistical procedure that first detects mutation combinations associated with single or multiple-drug resistance, and then infers detailed dependence structures among the interacting mutations in viral proteins (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]). Combined with molecular dynamics simulations and free energy calculations, Bayesian analysis predictions help to uncover genetic and structural mechanisms in the HIV treatment resistance. Results obtained with such stochastic methods pave the way not only for optimization of the use for existing HIV drugs, but also for the development of the new more efficient antiretroviral medicines. In this chapter we survey current challenges in the bioinformatics of anti-HIV therapy, and outline how recently emerged Bayesian methods can help with the clinical management of HIV-1 infection. We will provide a rigorous review of the Bayesian variable partition model and the recursive model selection procedure based on probability theory and mathematical data analysis techniques while highlighting real applications in HIV and HBV studies including HIV drug resistance (Zhang et al. in PNAS 107:1321, 2010 [1]), cross-resistance (Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]), HIV coreceptor usage (Svicher et al. in Antiviral Therapy 16(7):1035-1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14-A14, 2011 [5]; Alteri et al. in Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]), and occult HBV infection (Svicher et al. in Antiviral Res 93(1):86-93, 2012 [3]; Svicher et al. in Antiviral Ther 16(4):A85-A85, 2011 [6]).


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Mutación , Inteligencia Artificial , Teorema de Bayes , Humanos , Medicina de Precisión
6.
Phys Rev Lett ; 112(11): 113006, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702363

RESUMEN

Calcium monofluoride (CaF) is magnetically slowed and trapped using optical pumping. Starting from a collisionally cooled slow beam, CaF with an initial velocity of ∼ 30 m/s is slowed via magnetic forces as it enters a 800 mK deep magnetic trap. Employing two-stage optical pumping, CaF is irreversibly loaded into the trap via two scattered photons. We observe a trap lifetime exceeding 500 ms limited by background collisions. This method paves the way for cooling and magnetic trapping of chemically diverse molecules without closed cycling transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA