Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 62017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28085667

RESUMEN

Organ morphogenesis depends on the precise orchestration of cell migration, cell shape changes and cell adhesion. We demonstrate that Notch signaling is an integral part of the Wnt and Fgf signaling feedback loop coordinating cell migration and the self-organization of rosette-shaped sensory organs in the zebrafish lateral line system. We show that Notch signaling acts downstream of Fgf signaling to not only inhibit hair cell differentiation but also to induce and maintain stable epithelial rosettes. Ectopic Notch expression causes a significant increase in organ size independently of proliferation and the Hippo pathway. Transplantation and RNASeq analyses revealed that Notch signaling induces apical junctional complex genes that regulate cell adhesion and apical constriction. Our analysis also demonstrates that in the absence of patterning cues normally provided by a Wnt/Fgf signaling system, rosettes still self-organize in the presence of Notch signaling.


Asunto(s)
Morfogénesis , Tamaño de los Órganos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Pez Cebra/embriología , Animales
2.
Dev Cell ; 34(3): 267-82, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26190147

RESUMEN

In vertebrates, mechano-electrical transduction of sound is accomplished by sensory hair cells. Whereas mammalian hair cells are not replaced when lost, in fish they constantly renew and regenerate after injury. In vivo tracking and cell fate analyses of all dividing cells during lateral line hair cell regeneration revealed that support and hair cell progenitors localize to distinct tissue compartments. Importantly, we find that the balance between self-renewal and differentiation in these compartments is controlled by spatially restricted Notch signaling and its inhibition of Wnt-induced proliferation. The ability to simultaneously study and manipulate individual cell behaviors and multiple pathways in vivo transforms the lateral line into a powerful paradigm to mechanistically dissect sensory organ regeneration. The striking similarities to other vertebrate stem cell compartments uniquely place zebrafish to help elucidate why mammals possess such low capacity to regenerate hair cells.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Receptores Notch/metabolismo , Regeneración/fisiología , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Mecanorreceptores/metabolismo , Receptores Notch/antagonistas & inhibidores , Células Madre/citología , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA