Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337946

RESUMEN

While morphological and functional traits enable hydrophytes to survive under waterlogging and partial or complete submergence, the data on responses of psammophytes-sand plants-to flooding are very limited. We analyzed the effect of 5- and 10-day soil flooding on the photosynthetic apparatus and the synthesis of alcohol dehydrogenase (ADH), heat shock proteins 70 (HSP70), and ethylene in seedlings of psammophytes Alyssum desertorum and Secale sylvestre using electron microscopy, chlorophyll a fluorescence induction, and biochemical methods. It was found that seedlings growing under soil flooding differed from those growing in stationary conditions with such traits as chloroplast ultrastructure, pigment content, chlorophyll fluorescence induction, and the dynamics of ADH, HSP, and ethylene synthesis. Although flooding caused no apparent damage to the photosynthetic apparatus in all the variants, a significant decrease in total photosynthesis efficiency was observed in both studied plants, as indicated by decreased values of φR0 and PIABS,total. More noticeable upregulation of ADH in S. sylvestre, as well as increasing HSP70 level and more intensive ethylene emission in A. desertorum, indicate species-specific differences in these traits in response to short-term soil flooding. Meanwhile, the absence of systemic anaerobic metabolic adaptation to prolonged hypoxia causes plant death.

2.
Plants (Basel) ; 12(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514331

RESUMEN

This study was carried out to evaluate the effect of exogenous proline on the growth, biochemical responses, and plant recovery of drought-stressed oilseed rape plants after renewed irrigation. The experiment was conducted under controlled laboratory conditions. After 21 days of cultivation, 3-4 leaf stage seedlings were sprayed with proline (1 mM), then subjected to prolonged drought stress for 8 days to achieve a severe water deficit, next, irrigation was resumed and recovery was assessed after 4 days. The results show that exogenous application of proline reduced the drought-induced growth inhibition of seedlings while maintaining relative water content (RWC) and growth parameters closer to those of irrigated plants. Proline had a positive effect on chlorophyll accumulation and membrane permeability while decreasing ethylene, H2O2, and MDA levels. Moreover, after 4 days of recovery, the H2O2 content of the proline-treated plants was significantly lower (2-fold) and the MDA content was close to that of continuously irrigated plants. Thus, all these biochemical reactions influenced plant survival: after drought + proline treatment, the number of surviving plants was two times higher than that of drought-treated plants. The findings show that exogenous proline has antioxidant, osmotic, and growth-promoting properties that improve the drought tolerance of winter oilseed rape plants and is, therefore, beneficial for drought adaptation in oilseed rape.

3.
Plant Signal Behav ; 18(1): 2202977, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37071581

RESUMEN

Heat shock protein AtHSP90-2 is one of the three constitutive cytosolic HSP90s of Arabidopsis thaliana, which are highly homologous and show mild expression activation in response to stressful impacts. To characterize the functioning of AtHSP90-2, we have analyzed tissue-specificity of its expression during seedling development using a DsG transgenic line carrying a loss-of-function mutation of AtHSP90-2 via translational fusions with the ß-glucuronidase reporter gene (GUS). Histochemical analysis during the first two weeks of seedling growth revealed AtHSP90-2 expression in all organs, as well as differences in its intensity between tissues and showed its dynamics. The tissue-specific AtHSP90-2-GUS expression pattern was shown to be maintained under heat shock and water deficit. The most prominent GUS staining was detected in the vascular system and hydathodes of cotyledons, and stipules. The basipetal gradient of AtHSP90-2 expression during leaf formation, its dynamics in developing stipules, and the high level of its expression in cells with active transport function suggest a special role for the gene in certain cellular processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantones/genética , Plantones/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glucuronidasa/metabolismo
4.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986989

RESUMEN

In order to increase plants tolerance to drought, the idea of treating them with stress-protecting compounds exogenously is being considered. In this study, we aimed to evaluate and compare the impact of exogenous calcium, proline, and plant probiotics on the response of winter wheat to drought stress. The research was carried out under controlled conditions, simulating a prolonged drought from 6 to 18 days. Seedlings were treated with ProbioHumus 2 µL g-1 for seed priming, 1 mL 100 mL-1 for seedling spraying, and proline 1 mM according to the scheme. 70 g m-2 CaCO3 was added to the soil. All tested compounds improved the prolonged drought tolerance of winter wheat. ProbioHumus, ProbioHumus + Ca had the greatest effect on maintaining the relative leaf water content (RWC) and in maintaining growth parameters close to those of irrigated plants. They delayed and reduced the stimulation of ethylene emission in drought-stressed leaves. Seedlings treated with ProbioHumus and ProbioHumus + Ca had a significantly lower degree of membrane damage induced by ROS. Molecular studies of drought-responsive genes revealed substantially lower expression of Ca and Probiotics + Ca treated plants vs. drought control. The results of this study showed that the use of probiotics in combination with Ca can activate defense reactions that can compensate for the adverse effects of drought stress.

5.
Life Sci Space Res (Amst) ; 6: 51-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26256628

RESUMEN

The heat shock protein 90 (HSP90) is required for the maturation and conformational regulation of many regulatory proteins affecting morphogenetic pathways and stress tolerance. The purpose of this work is to disclose a role of HSP90 in radioresistance of seeds. Arabidopsis thaliana (Ler) seeds were exposed to γ-ray irradiation with doses of 0.1-1 kGy using (60)Co source to obtain a viable but polymorphic material. A comet assay of the seeds showed a dose-dependent increase in DNA damage. Phenotypic consequences of irradiation included growth stimulation at doses of 0.1-0.25 kGy and negative growth effects at doses from 0.5 kGy and beyond, along with increasing heterogeneity of seedling growth rate and phenotype. The frequencies of abnormal phenotypes were highly correlated with the degree of DNA damage in seeds. Treatment of seeds with geldanamycin (GDA), an inhibitor of HSP90, stimulated the seedling growth at all radiation doses and, at the same time, enhanced the growth rate and morphological diversity. It was also found that HSP70 induction by γ-rays was increased following GDA treatment (shown at 1 kGy). We suppose that the GDA-induced HSP70 can be involved in elimination of detrimental radiation effects that ultimately results in growth stimulation. On the other hand, the increase in phenotypic variation, when HSP90 function was impaired, confirms the supposition that the chaperone may control the concealment of cryptic genetic alterations and the developmental stability. In general, these results demonstrate that HSP90 may interface the stress response and phenotypic expression of genetic alterations induced by irradiation.


Asunto(s)
Arabidopsis/efectos de la radiación , Daño del ADN/efectos de la radiación , Germinación/efectos de la radiación , Proteínas HSP90 de Choque Térmico/metabolismo , Plantones/crecimiento & desarrollo , Semillas/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Benzoquinonas/farmacología , Rayos gamma/efectos adversos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Proteínas Tirosina Quinasas/farmacología , Tolerancia a Radiación/fisiología , Plantones/efectos de la radiación , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA