Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 64(12): 100473, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949369

RESUMEN

Protein aggregates arise naturally under normal physiological conditions, but their formation is accelerated by age or stress-induced protein misfolding. When the stressful event dissolves, these aggregates are removed by mechanisms, such as aggrephagy, chaperone-mediated autophagy, refolding attempts, or the proteasome. It was recently shown that mitochondria in yeast cells may support these primarily cytosolic processes. Protein aggregates attach to mitochondria, and misfolded proteins are transported into the matrix and degraded by mitochondria-specific proteases. Using a proximity labeling method and colocalization with an established stress granule (SG) marker, we were able to show that these mitochondria-localized aggregates that harbor the "super aggregator" Ola1p are, in fact, SGs. Our in vivo and in vitro studies have revealed that Ola1p can be transferred from mitochondria to lipid droplets (LDs). This "mitochondria to LD" aggregate transfer dampens proteotoxic effects. The LD-based protein aggregate removal system gains importance when other proteolytic systems fail. Furthermore, we were able to show that the distribution of SGs is drastically altered in LD-deficient yeast cells, demonstrating that LDs play a role in the SG life cycle.


Asunto(s)
Gotas Lipídicas , Saccharomyces cerevisiae , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Saccharomyces cerevisiae/metabolismo , Gránulos de Estrés
2.
Biomolecules ; 13(6)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37371492

RESUMEN

It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gotas Lipídicas , Animales , Gotas Lipídicas/metabolismo , Drosophila melanogaster , Diabetes Mellitus Tipo 2/metabolismo , Envejecimiento , Longevidad/fisiología , Caenorhabditis elegans/metabolismo , Saccharomyces cerevisiae , Mamíferos
3.
Front Cell Dev Biol ; 9: 774985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869375

RESUMEN

Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this "premature aging" phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA