Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177529

RESUMEN

Despite numerous innovations, measuring bacteria concentrations on a routine basis is still time consuming and ensuring accurate measurements requires careful handling. Furthermore, it often requires sampling small volumes of bacteria suspensions which might be poorly representative of the real bacteria concentration. In this paper, we propose a spectroscopy measurement method based on a description of the absorption/attenuation spectra of ESKAPEE bacteria. Concentrations were measured with accuracies less than 2%. In addition, mixing the mathematical description of the absorption/attenuation spectra of mammalian T-cells and bacteria allows for the simultaneous measurements of both species' concentrations. This method allows real-time, sampling-free and seeder-free measurement and can be easily integrated into a closed-system environment.


Asunto(s)
Bacterias , Mamíferos , Animales , Análisis Espectral
2.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501924

RESUMEN

Advanced Therapy Medicinal Products are promising drugs for patients in therapeutic impasses. Their complex fabrication process implies regular quality controls to monitor cell concentration. Among the different methods available, optical techniques offer several advantages. Our study aims to measure cell concentration in real time in a potential closed-loop environment using white light spectroscopy and to test the possibility of simultaneously measuring concentrations of several species. By analyzing the shapes of the absorption spectra, this system allowed the quantification of T-cells with an accuracy of about 3% during 30 h of cultivation monitoring and 26 h of doubling time, coherent with what is expected for normal cell culture. Moreover, our system permitted concentration measurements for two species in reconstructed co-cultures of T-cells and Candida albicans yeasts. This method can now be applied to any single or co-culture, it allows real-time monitoring, and can be easily integrated into a closed system.


Asunto(s)
Candida albicans , Linfocitos T , Humanos , Técnicas de Cocultivo , Levaduras , Técnicas de Cultivo de Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA