Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
2.
ACS Appl Nano Mater ; 6(21): 20089-20098, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38026613

RESUMEN

Highly porous metal oxide-polymer nanocomposites are attracting considerable interest due to their unique structural and functional features. A porous polymer matrix brings properties such as high porosity and permeability, while the metal oxide phase adds functionality. For the metal oxide phase to perform its function, it must be fully accessible, and this is possible only at the pore surface, but functioning surfaces require controlled engineering, which remains a challenge. Here, highly porous nanocomposite beads based on thin metal oxide nanocoatings and polymerized high internal phase emulsions (polyHIPEs) are demonstrated. By leveraging the unique properties of polyHIPEs, i.e., a three-dimensional (3D) interconnected network of macropores, and high-precision of the atomic-layer-deposition technique (ALD), we were able to homogeneously coat the entire surface of the pores in polyHIPE beads with TiO2-, ZnO-, and Al2O3-based nanocoatings. Parameters such as nanocoating thickness, growth per cycle (GPC), and metal oxide (MO) composition were systematically controlled by varying the number of deposition cycles and dosing time under specific process conditions. The combination of polyHIPE structure and ALD technique proved advantageous, as MO-nanocoatings with thicknesses between 11 ± 3 and 40 ± 9 nm for TiO2 or 31 ± 6 and 74 ± 28 nm for ZnO and Al2O3, respectively, were successfully fabricated. It has been shown that the number of ALD cycles affects both the thickness and crystallinity of the MO nanocoatings. Finally, the potential of ALD-derived TiO2-polyHIPE beads in photocatalytic oxidation of an aqueous bisphenol A (BPA) solution was demonstrated. The beads exhibited about five times higher activity than nanocomposite beads prepared by the conventional (Pickering) method. Such ALD-derived polyHIPE nanocomposites could find wide application in nanotechnology, sensor development, or catalysis.

3.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36236068

RESUMEN

New oligo- and polyenaminones with Mw ~ 7-50 KDa were prepared in high yields by transaminative amino-enaminone polymerization of regioisomeric bis[(dimethylamino)methylidene]cyclohexanediones with alkylene and phenylenediamines. The polymers obtained are practically insoluble in aqueous and organic solvents and exhibit film-forming properties, UV light absorption at wavelengths below 500 nm, and redox activity. These properties indicate a promising application potential of these polymers, which could find use in optical and optoelectronic applications and in energy storage devices.

4.
ACS Macro Lett ; 10(10): 1248-1253, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35549042

RESUMEN

Conjugated porous polymers through the emulsion-templating polymerization process are typically prepared as monoliths, and the emulsions are cured via metal-catalyzed cross-coupling reactions. Herein, we report the design and synthesis of well-defined, millimeter-sized conjugated porous polymer beads by combining an oil-in-oil-in-oil (O/O/O) double emulsion as a de novo template and an amino-catalyzed Knoevenagel condensation reaction as a polymerization chemistry to cure such emulsions. The 1,4-phenylenediacetonitrile is reacted with aromatic multialdehydes in the presence of piperidine, and a series of metal-free poly(arylene cyano-vinylene) beads are prepared. All beads exhibit 3D-interconnected microcellular morphology and substantial semiconducting properties, such as strong light harvesting ability in the visible light region with electrochemical band gaps in the range of 2.05-2.33 eV. Finally, the promising photocatalytic activity of these conjugated beads is demonstrated for a model sulfoxidation reaction under visible light irradiation, and near quantitative conversions with excellent chemoselectivities (>99%) are obtained.


Asunto(s)
Luz , Polímeros , Emulsiones/química , Polimerizacion , Polímeros/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA