Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(3): 517-527, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38165913

RESUMEN

Optical fiber tweezers offer a simple, low-cost and portable solution for non-invasive trapping and manipulation of particles. However, single-fiber tweezers require fiber tip modification (tapering, lensing, etc.) and the dual-fiber approach demands strict alignment and positioning of fibers for robust trapping of particles. In addition, both tweezing techniques offer a limited range of particle manipulation and operate in low flow velocity regimes (a few 100 µm s-1) when integrated with microfluidic devices. In this paper, we report a novel opto-hydrodynamic fiber tweezers (OHT) platform that exploits the balance between the hydrodynamic drag force and optical scattering forces to trap and manipulate single or multiple particles of various shapes, sizes, and material compositions in a microfluidic channel. 3D hydrodynamic flow focusing offers an easy and dynamic alignment of the particle trajectories with the optical axis of the fiber, which enables robust trapping of particles with high efficiency of >70% and throughput of 14 particles per minute (operating flow velocity: 1000 µm s-1) without the need for precision stages or complex fabrication. By regulating the optical power and flow rates, we were able to trap single particles at desired positions in the channel with a precision of ±10 µm as well as manipulate them over a long range upstream or downstream with a maximum distance of 500 µm. Our opto-hydrodynamic tweezers offer an alternative to conventional optical fiber tweezers for several applications in physics, biology, medicine, etc.

2.
Sci Adv ; 8(24): eabn8498, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704582

RESUMEN

Rotation of micro/nano-objects is important for micro/nanorobotics, three-dimensional imaging, and lab-on-a-chip systems. Optical rotation techniques are especially attractive because of their fuel-free and remote operation. However, current techniques require laser beams with designed intensity profile and polarization or objects with sophisticated shapes or optical birefringence. These requirements make it challenging to use simple optical setups for light-driven rotation of many highly symmetric or isotropic objects, including biological cells. Here, we report a universal approach to the out-of-plane rotation of various objects, including spherically symmetric and isotropic particles, using an arbitrary low-power laser beam. Moreover, the laser beam is positioned away from the objects to reduce optical damage from direct illumination. The rotation mechanism based on opto-thermoelectrical coupling is elucidated by rigorous experiments combined with multiscale simulations. With its general applicability and excellent biocompatibility, our universal light-driven rotation platform is instrumental for various scientific research and engineering applications.

3.
Adv Opt Mater ; 9(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34434691

RESUMEN

The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.

4.
ACS Photonics ; 8(6): 1673-1682, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35445142

RESUMEN

Plasmonic nanoapertures have found exciting applications in optical sensing, spectroscopy, imaging, and nanomanipulation. The subdiffraction optical field localization, reduced detection volume (~attoliters), and background-free operation make them particularly attractive for single-particle and single-molecule studies. However, in contrast to the high field enhancements by traditional "nanoantenna"-based structures, small field enhancement in conventional nanoapertures results in weak light-matter interactions and thus small enhancement of spectroscopic signals (such as fluorescence and Raman signals) of the analytes interacting with the nanoapertures. In this work, we propose a hybrid nanoaperture design termed "gold-nanoislands-embedded nanoaperture" (AuNIs-e-NA), which provides multiple electromagnetic "hotspots" within the nanoaperture to achieve field enhancements of up to 4000. The AuNIs-e-NA was able to improve the fluorescence signals by more than 2 orders of magnitude with respect to a conventional nanoaperture. With simple design and easy fabrication, along with strong signal enhancements and operability over variable light wavelengths and polarizations, the AuNIs-e-NA will serve as a robust platform for surface-enhanced optical sensing, imaging, and spectroscopy.

5.
Light Sci Appl ; 9: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194948

RESUMEN

Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling-opto-thermoelectric pulling (OTEP)-where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10-2 mW µm-2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices.

6.
Nano Lett ; 20(1): 768-779, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31834809

RESUMEN

Nanoaperture-based plasmonic tweezers have shown tremendous potential in trapping, sensing, and spectroscopic analysis of nano-objects with single-molecule sensitivity. However, the trapping process is often diffusion-limited and therefore suffers from low-throughput. Here, we present bubble- and convection-assisted trapping techniques, which use opto-thermally generated Marangoni and Rayleigh-Bénard convection flow to rapidly deliver particles from large distances to the nanoaperture instead of relying on normal diffusion, enabling a reduction of 1-2 orders of magnitude in particle-trapping time (i.e., time before a particle is trapped). At a concentration of 2 × 107 particles/mL, average particle-trapping times in bubble- and convection-assisted trapping were 7 and 18 s, respectively, compared with more than 300 s in the diffusion-limited trapping. Trapping of a single particle at an ultralow concentration of 2 × 106 particles/mL was achieved within 2-3 min, which would otherwise take several hours in the diffusion-limited trapping. With their quick delivery and local concentrating of analytes at the functional surfaces, our convection- and bubble-assisted trapping could lead to enhanced sensitivity and throughput of nanoaperture-based plasmonic sensors.


Asunto(s)
Nanoestructuras , Pinzas Ópticas , Nanotecnología
7.
Nanophotonics ; 9(4): 927-933, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34290954

RESUMEN

Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques.

8.
Rev Sci Instrum ; 90(2): 023107, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30831709

RESUMEN

Nanoparticles are important in several areas of modern biomedical research. However, detection and characterization of nanoparticles is challenging due to their small size. Back-focal-plane interferometry (BFPI) is a highly sensitive technique that has been used in laser tweezers for quantitative measurement of force and displacement. The utility of BFPI for detection and characterization of nanoparticles, however, has not yet been achieved. Here we show that BFPI can be used for rapid probing of a suspension of nanoparticles in a spatially confined microfluidic channel. We show that the Gaussian Root-mean-squared noise of the BFPI signal is highly sensitive to the nanoparticle size and can be used as a parameter for rapid detection of nanoparticles at a single-particle level and characterization of particle heterogeneities in a suspension. By precisely aligning the optical trap relative to the channel boundaries, individual polystyrene particles with a diameter as small as 63 nm can be detected using BFPI with a high signal-to-noise ratio.

9.
Part Part Syst Charact ; 36(8)2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33041521

RESUMEN

From unravelling the most fundamental phenomena to enabling applications that impact our everyday lives, the nanoscale world holds great promise for science, technology and medicine. However, the extent of its practical realization would rely on manufacturing at the nanoscale. Among the various nanomanufacturing approaches being investigated, the bottom-up approach involving assembly of colloidal nanoparticles as building blocks is promising. Compared to a top-down lithographic approach, particle assembly exhibits advantages such as smaller feature size, finer control of chemical composition, less defects, lower material wastage, and higher scalability. The capability to assemble colloidal particles one by one or "digitally" has been heavily sought as it mimics the natural way of making matter and enables construction of nanomaterials with sophisticated architectures. This progress report provides an insight into the tools and techniques for digital assembly of particles, including their working mechanisms and demonstrated particle assemblies. Examples of nanomaterials and nanodevices are presented to demonstrate the strength of digital assembly in nanomanufacturing.

10.
Nanophotonics ; 8(3): 475-485, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34290953

RESUMEN

Recent advances in opto-thermophoretic tweezers open new avenues for low-power trapping and manipulation of nanoparticles with potential applications in colloidal assembly, nanomanufacturing, life sciences, and nanomedicine. However, to fully exploit the opto-thermophoretic tweezers for widespread applications, the enhancement of their versatility in nanoparticle manipulations is pivotal. For this purpose, we translate our newly developed opto-thermophoretic tweezers onto an optical fiber platform known as opto-thermophoretic fiber tweezers (OTFT). We have demonstrated the applications of OTFT as a nanoparticle concentrator, as a nanopipette for single particle delivery, and as a nanoprobe. The simple setup and functional versatility of OTFT would encourage its use in various fields such as additive manufacturing, single nanoparticle-cell interactions, and biosensing.

11.
Lab Chip ; 17(12): 2125-2134, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28561826

RESUMEN

Optical tweezers have emerged as a powerful tool for multiparametric analysis of individual nanoparticles with single-molecule sensitivity. However, its inherent low-throughput characteristic remains a major obstacle to its applications within and beyond the laboratory. This limitation is further exacerbated when working with low concentration nanoparticle samples. Here, we present a microfluidic-based optical tweezers system that can 'actively' deliver nanoparticles to a designated microfluidic region for optical trapping and analysis. The active microfluidic delivery of nanoparticles results in significantly improved throughput and efficiency for optical trapping of nanoparticles. We observed a more than tenfold increase in optical trapping throughput for nanoparticles as compared to conventional systems at the same nanoparticle concentration. To demonstrate the utility of this microfluidic-based optical tweezers system, we further used back-focal plane interferometry coupled with a trapping laser for the precise quantitation of nanoparticle size without prior knowledge of the refractive index of nanoparticles. The development of this microfluidic-based active optical tweezers system thus opens the door to high-throughput multiparametric analysis of nanoparticles using precision optical traps in the future.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Nanopartículas , Pinzas Ópticas , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Analíticas Microfluídicas/métodos
12.
Opt Express ; 23(23): 30227-36, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26698503

RESUMEN

We study the plasmonic resonances of double nanoholes (DNHs) in metal films. These apertures exhibit the usual gap-mode Fabry-Pérot resonances, where the zeroth order resonance is determined by the waveguide cut-off and the first order resonance shows sensitivity to the film thickness. An additional wedge resonance is observed, which is sensitive to the curvature of the cusps in the DNHs, analogous to the wedge modes of single wedges. While the gap mode intensity increases dramatically with decreasing gap-width, the wedge mode intensity saturates since its field enhancement arises from the curvature of the metal film, like cylindrical Sommerfeld waves. Experimental transmission spectra agree well with finite-difference time-domain simulations showing these separate resonances. The controlled design of these resonances is critical for applications including optical tweezers, nonlinear conversion, sensing and spectroscopy.

13.
Analyst ; 140(14): 4760-78, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25734189

RESUMEN

Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers. More recently, nanoaperture optical tweezers have been used to probe the low-frequency (in the single digit wavenumber range) Raman active modes of single nanoparticles and proteins. Here we review recent developments in the field of nanoaperture optical tweezers and how they have been applied to protein-antibody interactions, protein-small molecule interactions including single molecule binding kinetics, and protein-DNA interactions. In addition, recent works on the integration of nanoaperture optical tweezers at the tip of optical fiber and in microfluidic environments are presented.


Asunto(s)
Nanotecnología , Pinzas Ópticas , Proteínas/química , Soluciones
14.
Nanoscale ; 7(6): 2295-300, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25584811

RESUMEN

We use a double nanohole (DNH) optical tweezer with two trapping lasers beating to excite the vibrational modes of single-stranded DNA (ssDNA) fragments in the extremely high frequency range. We find the resonant vibration frequency of a 20 base ssDNA to be 40 GHz. We show that the change in the resonant frequency for different lengths of the DNA strand is in good agreement with one dimensional lattice vibration theory. Thus the DNH tweezer system could distinguish between different lengths of DNA strands with resolution down to a few bases. By varying the base sequence and length, it is possible to adjust the resonance frequency vibration spectrum. The technique shows the potential for use in sequencing applications if we can improve the resolution of the present system to detect changes in resonant frequency for a single base change in a given sequence. The technique is single-molecule and label-free as compared to the existing methods used for DNA characterization like gel electrophoresis.


Asunto(s)
ADN/química , Nanotecnología/métodos , Pinzas Ópticas , Algoritmos , Materiales Biocompatibles/química , Técnicas Biosensibles , ADN de Cadena Simple/química , Electroforesis , Luz , Distribución Normal , Conformación de Ácido Nucleico , Oscilometría , Proteínas/química , Vibración
15.
Biomed Opt Express ; 5(6): 1886-94, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24940547

RESUMEN

Here we report on the use of double-nanohole (DNH) optical tweezers as a label-free and free-solution single-molecule probe for protein-DNA interactions. Using this approach, we demonstrate the unzipping of individual 10 base pair DNA-hairpins, and quantify how tumor suppressor p53 protein delays the unzipping. From the Arrhenius behavior, we find the energy barrier to unzipping introduced by p53 to be 2 × 10(-20) J, whereas cys135ser mutant p53 does not show suppression of unzipping, which gives clues to its functional inability to suppress tumor growth. This transformative approach to single molecule analysis allows for ultra-sensitive detection and quantification of protein-DNA interactions to revolutionize the fight against genetic diseases.

16.
Nano Lett ; 14(2): 853-6, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24404888

RESUMEN

We measure the dynamics of 20 nm polystyrene particles in a double nanohole trap to determine the trap stiffness for various laser powers. Both the autocorrelation analysis of Brownian fluctuations and the trapping transient analysis provide a consistent value of ∼ 0.2 fN/nm stiffness for 2 mW of laser power, which is similar to theoretical calculations for aperture trapping. As expected, the stiffness increases linearly with laser power. This is comparable to the stiffness obtained for conventional optical traps for trapping, but for ten times smaller dielectric particles and less power. This approach will allow us to quantitatively evaluate future aperture-based optical traps, with the goal of studying the folding dynamics of smaller proteins (∼ 10 kDa) and small-molecule interactions.

17.
Lab Chip ; 13(20): 4142-6, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23969596

RESUMEN

We use a double nanohole (DNH) optical trap to quantify the size and concentration of nanoparticles in solution. The time to trap shows a linear dependence with nanosphere size and a -2/3 power dependence with nanosphere concentration, which is in agreement with simple microfluidic considerations. The DNH approach has size-specificity on the order of a few nanometers, which was used to selectively quantify particles of a single size within a heterogeneous solution. By looking at individual trapping events, it is in principle possible to extend this approach to the ultimate limit of a single particle concentration, while also being able to operate at high concentrations in the same configuration. In addition, the DNH trap allows us to hold onto individual particles and thereby study constituents of a heterogeneous mixture. By repeating the trapping measurements on spherical particles of different refractive index, we found that the transmission step that indicates trapping scales empirically with the Clausius-Mossotti factor. This approach may be applied to several sensing applications, such as in the study of virus populations, where concentrations vary over many orders of magnitude.


Asunto(s)
Nanopartículas/análisis , Nanotecnología/métodos , Pinzas Ópticas , Nanopartículas/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA