Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinform Biol Insights ; 8: 1-16, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24453480

RESUMEN

A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.

2.
BMC Bioinformatics ; 12: 226, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21635786

RESUMEN

BACKGROUND: Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. RESULTS: Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. CONCLUSIONS: StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.


Asunto(s)
Algoritmos , Poliovirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Homología Estructural de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cartilla de ADN/genética , Modelos Moleculares , Datos de Secuencia Molecular , Poliovirus/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo
3.
Math Biosci ; 206(2): 309-19, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16214182

RESUMEN

We consider a mathematical model of viral spread in a population based on an immune response model embedded in an epidemic network model. The immune response model includes virus load and effector and memory T cells with two possible outcomes depending on parameters: (a) virus clearance and establishment of immune memory and (b) establishment of a non-zero viral presence characterized with increased T-cell concentrations. Isolated individuals can have different immune system parameters and, after a primary infection, can either return to the infection-free state or develop persistent or chronic infection. When individuals are connected in the network, they can reinfect each other. We show that the virus can persist in the epidemic network for indefinite time even if the whole population consists of individuals that are able to clear the virus when isolated from the network. In this case a few individuals with a relatively weak immune response can maintain the infection in the whole population. These results are in contrast to implications of classical epidemiological models that a viral epidemic will end if there is no influx of new susceptibles and if individuals can become immune after infection.


Asunto(s)
Modelos Inmunológicos , Virosis/inmunología , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/transmisión , Algoritmos , Animales , Humanos , Memoria Inmunológica/inmunología , Dinámicas no Lineales , Linfocitos T/inmunología , Carga Viral , Virosis/transmisión
4.
C R Biol ; 327(3): 261-76, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15127897

RESUMEN

We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc., are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.


Asunto(s)
Alimentación Animal , Arvicolinae/fisiología , Ambiente , Modelos Biológicos , Plantas , Animales , Clima , Dieta , Ingestión de Alimentos , Metabolismo Energético , Matemática , Desarrollo de la Planta , Densidad de Población , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA