Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(35): 46858-46871, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39167683

RESUMEN

Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.

2.
Phys Chem Chem Phys ; 25(9): 6693-6706, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807663

RESUMEN

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.

3.
J Chem Phys ; 151(20): 204703, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779319

RESUMEN

Iridium-based materials are among the most active bifunctional catalysts in heterogeneous catalysis and electrocatalysis. We have investigated the properties of atomically defined Ir/CeO2(111) model systems supported on Cu(111) and Ru(0001) by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, near ambient pressure X-ray photoelectron spectroscopy (NAP XPS), scanning tunneling microscopy, and temperature programmed desorption. Electronic metal-support interactions in the Ir/CeO2(111) system are accompanied by charge transfer and partial reduction of CeO2(111). The magnitude of the charge transfer depends strongly on the Ir coverage. The Ir/CeO2(111) system is stable against sintering upon annealing to 600 K in ultrahigh vacuum (UHV). Annealing of Ir/CeO2(111) in UHV triggers the reverse oxygen spillover above 450 K. The interaction of hydrogen with Ir/CeO2(111) involves hydrogen spillover and reversible spillover between 100 and 400 K accompanied by the formation of water above 190 K. Formation of water coupled with the strong reduction of CeO2(111) represents the dominant reaction channel upon annealing in H2 above 450 K. The interaction of Ir/CeO2(111) with oxygen has been investigated at moderate and NAP conditions. Additionally, the formation and stability of iridium oxide prepared by deposition of Ir in oxygen atmosphere was investigated upon annealing in UHV and under exposure to H2. The oxidation of Ir nanoparticles under NAP conditions yields stable IrOx nanoparticles. The stability of Ir and IrOx nanoparticles under oxidizing conditions is hampered, however, by encapsulation by cerium oxide above 450 K and additionally by copper and ruthenium oxides under NAP conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA