Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000917

RESUMEN

This study explores the feasibility of a wearable system to monitor vital signs during sleep. The system incorporates five inertial measurement units (IMUs) located on the waist, the arms, and the legs. To evaluate the performance of a novel framework, twenty-three participants underwent a sleep study, and vital signs, including respiratory rate (RR) and heart rate (HR), were monitored via polysomnography (PSG). The dataset comprises individuals with varying severity of sleep-disordered breathing (SDB). Using a single IMU sensor positioned at the waist, strong correlations of more than 0.95 with the PSG-derived vital signs were obtained. Low inter-participant mean absolute errors of about 0.66 breaths/min and 1.32 beats/min were achieved, for RR and HR, respectively. The percentage of data available for analysis, representing the time coverage, was 98.3% for RR estimation and 78.3% for HR estimation. Nevertheless, the fusion of data from IMUs positioned at the arms and legs enhanced the inter-participant time coverage of HR estimation by over 15%. These findings imply that the proposed methodology can be used for vital sign monitoring during sleep, paving the way for a comprehensive understanding of sleep quality in individuals with SDB.


Asunto(s)
Frecuencia Cardíaca , Polisomnografía , Sueño , Signos Vitales , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Femenino , Frecuencia Cardíaca/fisiología , Polisomnografía/instrumentación , Polisomnografía/métodos , Signos Vitales/fisiología , Adulto , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Sueño/fisiología , Frecuencia Respiratoria/fisiología , Síndromes de la Apnea del Sueño/diagnóstico , Síndromes de la Apnea del Sueño/fisiopatología , Persona de Mediana Edad , Adulto Joven
2.
Front Neurol ; 15: 1415970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903169

RESUMEN

Introduction: Conventional care in Parkinson's disease (PD) faces limitations due to the significant time and location commitments needed for regular assessments, lacking quantitative measurements. Telemonitoring offers clinicians an opportunity to evaluate patient symptomatology throughout the day during activities of daily living. Methods: The progression of PD symptoms over a two-year period was investigated in patients undergoing traditional evaluation, supplemented by insights from ambulatory measurements. Physicians integrated a telemonitoring device, the PDMonitor®, into daily practice, using it for informed medication adjustments. Results: Statistical analyses examining intra-subject changes for 17 subjects revealed a significant relative decrease of -43.9% in the device-reported percentage of time spent in "OFF" state (from 36.2 to 20.3%). Following the 24-month period, the majority of the subjects improved or exhibited stable symptom manifestation. In addition to positively impacting motor symptom control, telemonitoring was found to enhance patient satisfaction about their condition, medication effectiveness, and communication with physicians. Discussion: Considering that motor function is significantly worsened over time in patients with PD, these findings suggest a positive impact of objective telemonitoring on symptoms control. Patient satisfaction regarding disease management through telemonitoring can potentially improve adherence to treatment plans. In conclusion, remote continuous monitoring paves the way for a paradigm shift in PD, focusing on actively managing and potentially improve symptoms control.

3.
Front Neurol ; 14: 1080752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260606

RESUMEN

Parkinson's disease (PD) is characterized by a variety of motor and non-motor symptoms. As disease progresses, fluctuations in the response to levodopa treatment may develop, along with emergence of freezing of gait (FoG) and levodopa induced dyskinesia (LiD). The optimal management of the motor symptoms and their complications, depends, principally, on the consistent detection of their course, leading to improved treatment decisions. During the last few years, wearable devices have started to be used in the clinical practice for monitoring patients' PD-related motor symptoms, during their daily activities. This work describes the results of 2 multi-site clinical studies (PDNST001 and PDNST002) designed to validate the performance and the wearability of a new wearable monitoring device, the PDMonitor®, in the detection of PD-related motor symptoms. For the studies, 65 patients with Parkinson's disease and 28 healthy individuals (controls) were recruited. Specifically, during the Phase I of the first study, participants used the monitoring device for 2-6 h in a clinic while neurologists assessed the exhibited parkinsonian symptoms every half hour using the Unified Parkinson's Disease Rating Scale (UPDRS) Part III, as well as the Abnormal Involuntary Movement Scale (AIMS) for dyskinesia severity assessment. The goal of Phase I was data gathering. On the other hand, during the Phase II of the first study, as well as during the second study (PDNST002), day-to-day variability was evaluated, with patients in the former and with control subjects in the latter. In both cases, the device was used for a number of days, with the subjects being unsupervised and free to perform any kind of daily activities. The monitoring device produced estimations of the severity of the majority of PD-related motor symptoms and their fluctuations. Statistical analysis demonstrated that the accuracy in the detection of symptoms and the correlation between their severity and the expert evaluations were high. As a result, the studies confirmed the effectiveness of the system as a continuous telemonitoring solution, easy to be used to facilitate decision-making for the treatment of patients with Parkinson's disease.

4.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560313

RESUMEN

Parkinson's disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups. Assessment of PD patients has been performed by neurologists specialized in movement disorders using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-Part III: Motor Examination, on both ON and OFF medication states. Using as a reference point the quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal, mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal the dominant features to be used for four classification tasks. Specifically, for identifying relations between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost, Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD severity levels relevant to MDS-UPDRS: Part III ratings, respectively.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Marcha , Pruebas de Estado Mental y Demencia , Aprendizaje Automático , Índice de Severidad de la Enfermedad
5.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883805

RESUMEN

Sensor placement identification in body sensor networks is an important feature, which could render such a system more robust, transparent to the user, and easy to wear for long term data collection. It can be considered an active measure to avoid the misuse of a sensing system, specifically as these platforms become more ubiquitous and, apart from their research orientation, start to enter industries, such as fitness and health. In this work we discuss the offline, fixed class, sensor placement identification method implemented in PDMonitor®, a medical device for long-term Parkinson's disease monitoring at home. We analyze the stepwise procedure used to accurately identify the wearables depending on how many are used, from two to five, given five predefined body positions. Finally, we present the results of evaluating the method in 88 subjects, 61 Parkinson's disease patients and 27 healthy subjects, when the overall average accuracy reached 99.1%.


Asunto(s)
Enfermedad de Parkinson , Humanos , Monitoreo Fisiológico , Enfermedad de Parkinson/diagnóstico , Postura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA