Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623640

RESUMEN

Lithium disilicate (LDS) glass ceramics are among the most common biomaterials in conservative dentistry and prosthodontics, and their wear behavior is of paramount clinical interest. An innovative in vitro model is presented, which employs CAD/CAM technology to simulate the periodontal ligament and alveolar bone. The model aims to evaluate the effect of the abutment rigidity on the wear resistance of the LDS glass ceramic. Two experimental groups (LDS restorations supported by dental implants, named LDS-on-Implant, or by hybrid ceramic tooth replicas with artificial periodontal ligament, named LDS-on-Tooth-Replica) and a control group (LDS-Cylinders) were compared. Fifteen samples (n = 15) were fabricated for each group and subjected to testing, with LDS antagonistic cusps opposing them over 120,000 cycles using a dual axis chewing simulator. Wear resistance was analyzed by measuring the vertical wear depth (mm) and the volume loss (mm3) on each LDS sample, as well as the linear antagonist wear (mm) on LDS cusps. Mean values were calculated for LDS-Cylinders (0.186 mm, 0.322 mm3, 0.220 mm, respectively), LDS-on-Implant (0.128 mm, 0.166 mm3, 0.199 mm, respectively), and LDS-on-Tooth-Replica (0.098 mm, 0.107 mm3, 0.172 mm, respectively) and compared using one-way-ANOVA and Tukey's tests. The level of significance was set at 0.05 in all tests. Wear facets were inspected under a scanning electron microscope. Data analysis revealed that abutment rigidity was able to significantly affect the wear pattern of LDS, which seems to be more intense on rigid implant-abutment supports compared to resilient teeth replicas with artificial periodontal ligament.

2.
Eur J Dent ; 16(4): 719-728, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35395691

RESUMEN

Resin composites are one of the most commonly used materials in restorative dentistry. To improve their handling and facilitate restoration sculpting, clinicians began to lubricate modeling instruments with various substances like alcohol, unfilled resins, or even bonding agents. Although the technique is commonly present in daily clinical practice, it has not been precisely described in the literature and both application methods and lubricating materials vary across the available studies. This study aims to summarize the currently available knowledge about influence of instrument lubrication on properties of dental composites. Literature selection was conducted within MEDLINE, SCOPUS, and EBSCO databases. Instrument lubrication seems not to be indifferent for composite mechanical and optical properties. Moreover, various lubricants can differently affect the composite material, so the choice of lubricating agent should be deliberate and cautious. Available in vitro studies suggest possible incorporation of lubricant into the composite structure. Unfilled resins based on bisphenol A-glycidyl methacrylate (Bis-GMA) seem to be the best choice for the lubricant, as bonding agents containing hydrophilic molecules and alcohols carry a bigger risk of altering the composite properties. Further research is necessary to evaluate lubricants' influence in clinical practice conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA