Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Protistol ; 95: 126113, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197291

RESUMEN

The function of recirculating aquaculture systems (RAS) relies on microbial communities, which convert toxic, fish-excreted ammonia into substances that can provide nutrients to plants as in the case of aquaponics systems. In the present study, heterotrophic protist communities of experimental sea water RAS and freshwater aquaponics systems were investigated using microscopy to characterize their diversity, natural abundance, and potential growth rates. Heterotrophic protist abundance was low (732 ± 21 to 5451 ± 118 ciliates L-1 and 58 ± 8 to 147 ± 18 nanoflagellates mL-1 in the aquaponics system and 78 ± 28 to 203 ± 48 ciliates L-1 in the RAS), which is in line with values typically reported for rivers. In the aquaponics system, ciliates grew faster in the fish rearing tanks (1.9 ± 0.01 to 1.21 ± 0.03 d-1 compared to 0.54 ± 0.03 to 0.79 ± 0.05 d-1 in the other compartments), while heterotrophic nanoflagellates grew slower in drain tanks downstream of the hydroponics compartment (0.5 ± 0.3 to 1.37 ± 0.05 d-1 and 4.09 ± 0.11 d-1 to 6.03 ± 0.34 d-1in the other compartments). Results indicated distinct niches and reduced microeukaryotic diversity at the end of the system's operation cycle.

2.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38986513

RESUMEN

Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.


Asunto(s)
Bacterias , Diatomeas , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Fitoplancton/genética , Clorofila A/metabolismo , Fotosíntesis , Transcriptoma
3.
Int Microbiol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740652

RESUMEN

The gills and skin microbiota and microbiome of wild fish remain far more under-investigated compared to that of farmed fish species, despite that these animal-microbe interactions hold the same ecophysiological roles in both cases. In this study, the gills and skin bacterial microbiota profiles and their presumptive bacterial metabolisms were investigated in five open-sea fishes: bullet tuna (Auxis sp.), common dolphinfish (Coryphaena hippurus), Atlantic little tunny (Euthynnus alletteratus), Atlantic bonito (Sarda sarda) and Atlantic white marlin (Kajikia albida). Gills and skin tissues were collected from two to three individuals per species, from specimens caught by recreational trolling during summer of 2019, and their bacterial 16S rRNA gene diversity was analysed by high-throughput sequencing. The gills bacterial communities among the five species were clearly different but not the skin bacterial microbiota. The dominant operational taxonomic units belonged to the Moraxellaceae, Pseudomonadaceae, Rhodobacteraceae, Staphylococcaceae and Vibrionaceae families. Despite the differences in taxonomic composition, the presumptive bacterial metabolisms between the gills and skin of the five fishes investigated here were ≥ 94% similar and were dominated by basic metabolism, most likely reflecting the continuous exposure of these tissues in the surrounding seawater.

4.
Microbiol Spectr ; 12(1): e0280523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084980

RESUMEN

IMPORTANCE: This study showed that during the rehabilitation of two rescued Mediterranean monk seal pups (Monachus monachus), the skin and fecal bacterial communities showed similar succession patterns between the two individuals. This finding means that co-housed pups share their microbiomes, and this needs to be considered in cases of infection outbreaks and their treatment. The housing conditions, along with the feeding scheme and care protocols, including the admission of antibiotics as prophylaxis, probiotics, and essential food supplements, resulted in bacterial communities with no apparent pathogenic bacteria. This is the first contribution to the microbiome of the protected seal species of M. monachus and contributes to the animal's conservation practices through its microbiome.


Asunto(s)
Monjes , Phocidae , Humanos , Animales
5.
PeerJ ; 11: e16655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144191

RESUMEN

Background-Aim: Protistan communities have a major contribution to biochemical processes and food webs in coastal ecosystems. However, related studies are scarce and usually limited in specific groups and/or sites. The present study examined the spatial structure of the entire protistan community in seven different gulfs and three different depths in a regional Mediterranean Sea, aiming to define taxa that are important for differences detected in the marine microbial network across the different gulfs studied as well as their trophic interactions. Methods: Protistan community structure analysis was based on the diversity of the V2-V3 hypervariable region of the 18S rRNA gene. Operational taxonomic units (OTUs) were identified using a 97% sequence identity threshold and were characterized based on their taxonomy, trophic role, abundance and niche specialization level. The differentially abundant, between gulfs, OTUs were considered for all depths and interactions amongst them were calculated, with statistic and network analysis. Results: It was shown that Dinophyceae, Bacillariophyta and Syndiniales were the most abundant groups, prevalent in all sites and depths. Gulfs separation was more striking at surface corroborating with changes in environmental factors, while it was less pronounced in higher depths. The study of differentially abundant, between gulfs, OTUs revealed that the strongest biotic interactions in all depths occurred between parasite species (mainly Syndiniales) and other trophic groups. Most of these species were generalists but not abundant highlighting the importance of rare species in protistan community assemblage. Conclusion: Overall this study revealed the emergence of parasites as important contributors in protistan network regulation regardless of depth.


Asunto(s)
Microbiota , Parásitos , Animales , Eucariontes/genética , Parásitos/genética , Biodiversidad , ARN Ribosómico 18S/genética
6.
Microorganisms ; 11(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764146

RESUMEN

The use of antibiotics in open-water aquaculture is often unavoidable when faced with pathogens with high mortality rates. In addition, seasonal pathogen surges have become more common and more intense over the years. Apart from the apparent cost of antibiotic treatment, it has been observed that, in aquaculture practice, the surviving fish often display measurable growth impairment. To understand the role of gut microbiota on the observed growth impairment, in this study, we follow the incidence of Photobacterium damselae subsp. piscicida in a seabass commercial open-water aquaculture setting in Galaxidi (Greece). Fish around 10 months of age were fed with feed containing oxytetracycline (120 mg/kg/day) for twelve days, followed by a twelve-day withdrawal period, and another eighteen days of treatment. The fish were sampled 19 days before the start of the first treatment and one month after the end of the second treatment cycle. Sequencing of the 16S rRNA gene was used to measure changes in the gut microbiome. Overall, the gut microbiota community, even a month after treatment, was highly dysbiotic and characterized by very low alpha diversity. High abundances of alkalophilic bacteria in the post-antibiotic-treated fish indicated a rise in pH that was coupled with a significant increase in gut parasites. This study's results indicate that oxytetracycline (OTC) treatment causes persistent dysbiosis even one month after withdrawal and provides a more suitable environment for an increase in parasites. These findings highlight the need for interventions to restore a healthy and protective gut microbiome.

7.
Animals (Basel) ; 13(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37443952

RESUMEN

Metamorphosis entails hormonally regulated morphological and physiological changes requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the impact of the probiotic Phaeobacter inhibens as a water additive on cellular signaling pathways in the metamorphosis of greater amberjack (Seriola dumerili). Activation of insulin-like growth factor type 1 receptor (IGF-1R), protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and AMP-activated protein kinase (AMPK), induction of heat shock proteins (Hsps), and programmed cell death were assessed through SDS-Page/immunoblot analysis, while energy metabolism was determined through enzymatic activities. According to the results, greater amberjack reared in P. inhibens-enriched water entered the metamorphic phase with greater body length, while protein synthesis was triggered to facilitate the hypertrophic growth as indicated by IGF-1/Akt activation and AMPK inhibition. Contrarily, MAPKs levels were reduced, whereas variations in Hsps response were evident in the probiotic treatment. Apoptosis and autophagy were mobilized potentially for the structural remodeling processes. Furthermore, the elevated enzymatic activities of intermediary metabolism highlighted the excess energy demands of metamorphosis. Collectively, the present findings demonstrate that P. inhibens may reinforce nutrient utilization, thus leading greater amberjack to an advanced growth and developmental state.

8.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317149

RESUMEN

Cyanobacterial biomass such as spirulina (Arthrospira spp.) is widely available as a food supplement and can also be added to foods as a nutritionally beneficial ingredient. Spirulina is often produced in open ponds, which are vulnerable to contamination by various microorganisms, including some toxin-producing cyanobacteria. This study examined the microbial population of commercially available spirulina products including for the presence of cyanobacterial toxins. Five products (two supplements, three foods) were examined. The microbial populations were determined by culture methods, followed by identification of isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and by 16S rRNA amplicon sequencing of the products themselves and of the total growth on the enumeration plates. Toxin analysis was carried out by enzyme-linked immunosorbent assay (ELISA). Several potentially pathogenic bacteria were detected in the products, including Bacillus cereus and Klebsiella pneumoniae. Microcystin toxins were detected in all the products at levels that could lead to consumers exceeding their recommended daily limits. Substantial differences were observed in the identifications obtained using amplicon sequencing and MALDI-TOF, particularly between closely related Bacillus spp. The study showed that there are microbiological safety issues associated with commercial spirulina products that should be addressed, and these are most likely associated with the normal means of production in open ponds.

9.
Microb Ecol ; 86(2): 1405-1415, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36529834

RESUMEN

Fish microbiome science is progressing fast, but it is biased toward farmed or laboratory fish species against natural fish populations, which remain considerably underinvestigated. We analyzed the midgut bacterial microbiota of 45 specimens of 12 fish species collected from the Gyaros Island marine protected area (Aegean Sea, Greece). The species belong to seven taxonomic families and are either herbivores or omnivores. Mucosa midgut bacterial diversity was assessed by amplicon metabarcoding of the 16S rRNA V3-V4 gene region. A total of 854 operational taxonomic units (OTUs) were identified. In each fish species, between 2 and 18 OTUs dominated with cumulative relative abundance ≥ 70%. Most of the dominating bacterial taxa have been reported to occur both in wild and farmed fish populations. The midgut bacterial communities were different among the 12 fish species, except for Pagrus pagrus and Pagellus erythrinus, which belong to the Sparidae family. No differentiation of the midgut bacterial microbiota was found based on feeding habits, i.e., omnivorous vs. carnivorous. Comparing wild and farmed P. pagrus midgut bacterial microbiota revealed considerable variation between them. Our results expand the gut microbiota of wild fish and support the host species effect as the more likely factor shaping intestinal bacterial microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Grecia , ARN Ribosómico 16S/genética , Microbiota/genética , Bacterias/genética , Microbioma Gastrointestinal/genética , Peces
10.
Fish Physiol Biochem ; 48(6): 1665-1684, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36459361

RESUMEN

Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.


Asunto(s)
Perciformes , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mitógenos , Transducción de Señal , Perciformes/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 1 , Larva/metabolismo , Muerte Celular
11.
PeerJ ; 10: e14311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353601

RESUMEN

Remote sensing of inland waters is challenging, but also important, due to the need to monitor the ever-increasing harmful algal blooms (HABs), which have serious effects on water quality. The Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites program is capable of providing images for the monitoring of such waters. Atmospheric correction is a necessary process in order to retrieve the desired surface-leaving radiance signal and several atmospheric correction methods have been developed through the years. However, many of these correction methods require programming language skills, or function as commercial software plugins, limiting their possibility of use by end users. Accordingly, in this study, the free SNAP software provided by the European Space Agency (ESA) was used to evaluate the possible differences between a partial atmospheric correction method accounting for Rayleigh scattering and a full atmospheric correction method (iCOR), applied on Sentinel-3 OLCI images of a shallow, highly eutrophic water reservoir. For the complete evaluation of the two methods, in addition to the comparison of the band reflectance values, chlorophyll (CHL) and cyanobacteria (CI) indices were also calculated and their values were intercompared. The results showed, that although the absolute values between the two correction methods did not coincide, there was a very good correlation between the two methods for both bands' reflectance (r > 0.73) and the CHL and CI indices values (r > 0.95). Therefore, since iCOR correction image processing time is 25 times longer than Rayleigh correction, it is proposed that the Rayleigh partial correction method may be alternatively used for seasonal water monitoring, especially in cases of long time-series, enhancing time and resources use efficiency. Further comparisons of the two methods in other inland water bodies and evaluation with in situ chlorophyll and cyanobacteria measurements will enhance the applicability of the methodology.


Asunto(s)
Clorofila , Calidad del Agua , Floraciones de Algas Nocivas , Factores de Tiempo
12.
Environ Pollut ; 312: 120038, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030951

RESUMEN

Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.


Asunto(s)
Ecosistema , Fitoplancton , Amoníaco , Animales , Aves , Peces , Oxígeno , Plancton , Humedales , Zooplancton
13.
Sci Rep ; 12(1): 121, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996900

RESUMEN

Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species.


Asunto(s)
Alimentación Animal , Apoptosis , Autofagia , Insectos Comestibles/embriología , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Peces/metabolismo , Hígado/metabolismo , Proteoma , Tenebrio/embriología , Animales , Lubina/metabolismo , Larva , Valor Nutritivo , Oncorhynchus mykiss/metabolismo , Proteómica , Dorada/metabolismo , Especificidad de la Especie
14.
Curr Opin Biotechnol ; 73: 121-127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34365079

RESUMEN

Like for other vertebrates, the fish microbiome is critical to the health of its host and has complex and dynamic interactions with the surrounding environment. Thus, the study of the fish microbiome can benefit from the new prospects gained by innovative biotechnological applications in human and other animals, that include manipulation of the associated microbial communities (to improve the health, productivity, and sustainability of fish production), in vitro gut simulators, synthetic microbial communities, and others. Here, we summarize the current state of knowledge on such biotechnological approaches to better understand and engineer the fish microbiome, as well as to advance our knowledge on host-microbes interactions. A particular focus is given to the most recent strategies for fish microbiome manipulation to improve fish health, food safety and environmental sustainability.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Biotecnología , Peces
15.
PeerJ ; 9: e11522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141483

RESUMEN

The aim of this study is to investigate the effect of three daily fish feeding frequencies, two, four and eight times per day (FF2, FF4, and FF8, respectively) on growth performance of sea bass (Dicentrarchus labrax)and lettuce plants (Lactuca sativa) reared in aquaponics. 171 juvenile sea bass with an average body weight of 6.80 ± 0.095 g were used, together with 24 lettuce plants with an average initial height of 11.78 ± 0.074 cm over a 45-day trial period. FF2 fish group showed a significantly lower final weight, weight gain and specific growth rate than the FF4 and FF8 groups. Voluntary feed intake was similar for all the three feeding frequencies treatmens (p > 0.05). No plant mortality was observed during the 45-day study period. All three aquaponic systems resulted in a similar leaf fresh weight and fresh and dry aerial biomass. The results of the present study showed that the FF4 or FF8 feeding frequency contributes to the more efficient utilization of nutrients for better growth of sea bass adapted to fresh water while successfully supporting plant growth to a marketable biomass.

16.
Microorganisms ; 9(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800578

RESUMEN

Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3-V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.

17.
Microb Ecol ; 81(2): 460-470, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32840670

RESUMEN

In this study, we hypothesized that sympatrically grown farmed fish, i.e. fish which experience similar environmental conditions and nutritionally similar diets, would have more convergent gut microbiota. Using a "common garden" approach, we identified the core microbiota and bacterial community structure differences between five fish species farmed in the same aquaculture site on the west coast of the Aegean Sea, Greece. The investigated individuals were at similar developmental stages and reared in adjacent (< 50 m) aquaculture cages; each cage had 15 kg fish m-3. The diets were nutritionally similar to support optimal growth for each fish species. DNA from the midgut of 3-6 individuals per fish species was extracted and sequenced for the V3-V4 region of the bacterial 16S rRNA. Only 3.9% of the total 181 operational taxonomic units (OTUs) were shared among all fish. Between 5 and 74 OTUs were unique to each fish species. Each of the investigated fish species had a distinct profile of dominant OTUs, i.e. cumulative relative abundance of ≥ 80%. Co-occurrence network analysis for each fish species showed that all networks were strongly dominated by positive correlations between the abundances of their OTUs. However, each fish species had different network characteristics suggesting the differential significance of the OTUs in each of the five fish species midgut. The results of the present study may provide evidence that adult fish farmed in the Mediterranean Sea have a rather divergent and species-specific gut microbiota profile, which are shaped independently of the similar environmental conditions under which they grow.


Asunto(s)
Explotaciones Pesqueras , Peces/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Dieta/veterinaria , Peces/clasificación , Peces/crecimiento & desarrollo , Grecia , Mar Mediterráneo , ARN Ribosómico 16S , Especificidad de la Especie
18.
Front Microbiol ; 11: 1848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013724

RESUMEN

Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32896688

RESUMEN

Despite the technical progress in high-throughput sequencing technologies, defining the sample size which is capable of yielding representative inferences in metabarcoding analysis still remains debatable. The present study addresses the influence of individual variability in assessing dietary effects on fish gut microbiota parameters and estimates the biological sample size that is sufficient to imprint a statistically secure outcome. European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) were fed three alternative animal protein diets and a fishmeal control diet. Gut microbiota data from 12 individuals per diet, derived from Illumina sequencing of the V3-V4 region of the 16S rRNA gene, were randomized in all possible combinations of n-1 individuals. Results in this study showcased that increasing the sample size can limit the prevalence of individuals with high microbial load on the outcome and can ensure the statistical confidence required for an accurate validation of dietary-induced microbe shifts. Inter-individual variability was evident in the four dietary treatments where consequently misleading inferences arose from insufficient biological replication. These findings have critical implications for the design of future metabarcoding studies and highlight the urgency in selecting an adequate sample size able to safely elucidate the dietary effects on fish gut microbial communities.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Proteínas de Peces/administración & dosificación , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Lubina , Dorada
20.
Environ Manage ; 64(6): 675-688, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31748947

RESUMEN

The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa.


Asunto(s)
Lagos , Fitoplancton , Monitoreo del Ambiente , Europa (Continente) , Grecia , Región Mediterránea , Portugal , España , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA