Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 102(4): 151355, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37639782

RESUMEN

Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.


Asunto(s)
Transducción de Señal , Proteína de Unión al GTP rhoB , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/química , Proteína de Unión al GTP rhoB/metabolismo , GTP Fosfohidrolasas/metabolismo , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
2.
Front Immunol ; 13: 980539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059552

RESUMEN

Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.


Asunto(s)
Anticuerpos de Dominio Único , Actinas/metabolismo , Guanosina Trifosfato , Transducción de Señal , Anticuerpos de Dominio Único/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo
3.
J Cell Sci ; 131(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29192060

RESUMEN

The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Mapeo de Interacción de Proteínas/métodos , Activadores de GTP Fosfohidrolasa/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Unión Proteica , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
4.
Sci Rep ; 3: 2854, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24092409

RESUMEN

Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Recombinantes , Animales , Línea Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Orden Génico , Vectores Genéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Imagen Molecular , Mutación , Unión Proteica , Ingeniería de Proteínas , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados , Solubilidad , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA