Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 122(13): 3615-3619, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29425035

RESUMEN

The efficiency at maximum power (EMP) is investigated for classical irreversible thermal or chemical model engines. The heat or particle transport is governed by flux-force relations of the general power-law type. Special attention is given to engines that feature asymmetric transport laws, one for input (of heat or particles) and a different one for output. It is shown that in a couple of case studies, the EMP of such engines is close to the lowest of the two EMPs that would result for symmetric implementations of the transport laws. As a consequence, ideal efficiency at maximum power is only possible in the model in which both flux-force relations are of step-function type.

2.
Soft Matter ; 12(17): 4052-8, 2016 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-27029605

RESUMEN

The contact line between the colloid-rich bulk liquid and an adsorbed thin film in colloid-polymer mixtures (CPM) is studied by means of an interface displacement model. The interface displacement profiles are compared to laser scanning confocal microscopy (LSCM) images. The mixtures consist of poly(methylmetacrylate) (PMMA) colloids and polystyrene (PS) polymers with polymer-to-colloid size ratio q = 1.18. Based on the experimental parameters, the theoretical model predicts a contact angle for colloid-rich liquid droplets adsorbed on glass of θ∞ = 59°, assuming a contact line with infinite radius, R = ∞. When a contact-line curvature correction and a correction for the protein-limit character of the CPM are taken into account, a modest shift is obtained. The refined theory predicts θ≈ 56°. The contact angle determined visually from the LSCM images is θ≈ 30°. The model predicts a three-phase contact-line tension of τ = -1.2 × 10(-12) N (uncorrected) and τ = -2.3 × 10(-13) N (with protein-limit correction), which is physically sound both in sign and magnitude. The line tension influences the contact angle to a small extent due to the contact line curvature. The predicted width of the transition zone between the thin film and the droplet is about 2 µm. The effect of gravity is noticeable as a deformation near the middle of the droplet.


Asunto(s)
Microscopía Confocal , Modelos Moleculares , Polimetil Metacrilato/química , Poliestirenos/química , Adsorción , Coloides
3.
J Chem Phys ; 141(4): 044904, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25084953

RESUMEN

An extended theoretical study of interface potentials in adsorbed colloid-polymer mixtures is performed. To describe the colloid-polymer mixture near a hard wall, a simple Cahn-Nakanishi-Fisher free-energy functional is used. The bulk phase behaviour and the substrate-adsorbate interaction are modelled by the free-volume theory for ideal polymers with polymer-to-colloid size ratios q = 0.6 and q = 1. The interface potentials are constructed with help from a Fisher-Jin crossing constraint. By manipulating the crossing density, a complete interface potential can be obtained from natural, single-crossing, profiles. The line tension in the partial wetting regime and the boundary tension along prewetting are computed from the interface potentials. The line tensions are of either sign, and descending with increasing contact angle. The line tension takes a positive value of 10(-14)-10(-12) N near a first-order wetting transition, passes through zero and decreases to minus 10(-14)-10(-12) N away from the first-order transition. The calculations of the boundary tension along prewetting yield values increasing from zero at the prewetting critical point up to the value of the line tension at first-order wetting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA