Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 182(1): 185-203, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31427464

RESUMEN

Polycomb Repressive Complexes (PRC1 and PRC2) regulate developmental transitions in plants. AtBMI1, a PRC1 member, represses micro RNA156 (miR156) to trigger the onset of adult phase in Arabidopsis (Arabidopsis thaliana). miR156 overexpression (OE) reduces below-ground tuber yield, but stimulates aerial tubers in potato (Solanum tuberosum ssp andigena) under short-day (SD) photoperiodic conditions. Whether PRC members could govern tuber development through photoperiod-mediated regulation of miR156 is unknown. Here, we investigated the role of two PRC proteins, StMSI1 (PRC2 member) and StBMI1-1, in potato development. In wild-type andigena plants, StMSI1 and miR156 levels increased in stolon, whereas StBMI1-1 decreased under SD conditions. StMSI1-OE and StBMI1-1-antisense (AS) lines produced pleiotropic effects, including altered leaf architecture/compounding and reduced below-ground tuber yield. Notably, these lines showed enhanced miR156 accumulation accompanied by aerial stolons and tubers from axillary nodes, similar to miR156-OE lines. Further, grafting of StMSI1-OE or StBMI1-1-AS on wild-type stock resulted in reduced root biomass and showed increased accumulation of miR156a/b and -c precursors in the roots of wild-type stocks. RNA-sequencing of axillary nodes from StMSI1-OE and StBMI1-1-AS lines revealed downregulation of auxin and brassinosteroid genes, and upregulation of cytokinin transport/signaling genes, from 1,023 differentially expressed genes shared between the two lines. Moreover, we observed downregulation of genes encoding H2A-ubiquitin ligase and StBMI1-1/3, and upregulation of Trithorax group H3K4-methyl-transferases in StMSI1-OE Chromatin immunoprecipitation-quantitative PCR confirmed H3K27me3-mediated suppression of StBMI1-1/3, and H3K4me3-mediated activation of miR156 in StMSI1-OE plants. In summary, we show that cross talk between histone modifiers regulates miR156 and alters hormonal response during aerial tuber formation in potato under SD conditions.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética
2.
BMC Plant Biol ; 18(1): 284, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445921

RESUMEN

BACKGROUND: Small RNAs (sRNAs), especially miRNAs, act as crucial regulators of plant growth and development. Two other sRNA groups, trans-acting short-interfering RNAs (tasiRNAs) or phased siRNAs (phasiRNAs), are also emerging as potential regulators of plant development. Stolon-to-tuber transition in potato is an important developmental phase governed by many environmental, biochemical and hormonal cues. Among different environmental factors, photoperiod has a major influence on tuberization. Several mobile signals, mRNAs, proteins and transcription factors have been widely studied for their role in tuber formation in potato, however, no information is yet available that describes the molecular signals governing the early stages of stolon transitions or cell-fate changes at the stolon tip before it matures to potato. Stolon could be an interesting model for studying below ground organ development and we hypothesize that small RNAs might be involved in regulation of stolon-to-tuber transition process in potato. Also, there is no literature that describes the phased siRNAs in potato development. RESULTS: We performed sRNA profiling of early stolon stages (4, 7 and 10 d) under long-day (LD; 16 h light, 8 h dark) and short-day (SD; 8 h light, 16 h dark) photoperiodic conditions. Altogether, 7 (out of 324) conserved and 12 (out of 311) novel miRNAs showed differential expression in early stolon stages under SD vs LD photoperiodic conditions. Key target genes (StGRAS, StTCP2/4 and StPTB6) exhibited differential expression in early stolon stages under SD vs LD photoperiodic conditions, indicative of their potential role in tuberization. Out of 830 TAS-like loci identified, 24 were cleaved by miRNAs to generate 190 phased siRNAs. Some of them targeted crucial tuberization genes such as StPTB1, POTH1 and StCDPKs. Two conserved TAS loci, referred as StTAS3 and StTAS5, which share close conservation with members of the Solanaceae family, were identified in our analysis. One TAS-like locus (StTm2) was validated for phased siRNA generation and one of its siRNA was predicted to cleave an important tuber marker gene StGA2ox1. CONCLUSION: Our study suggests that sRNAs and their selective target genes could be associated with the regulation of early stages of stolon-to-tuber transitions in a photoperiod-dependent manner in potato.


Asunto(s)
Genoma de Planta/genética , MicroARNs/genética , Fotoperiodo , ARN Interferente Pequeño/genética , Solanum tuberosum/genética , Perfilación de la Expresión Génica , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , ARN de Planta/genética , Solanum tuberosum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA