Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255961

RESUMEN

mRNA vaccines have been shown to be effective in combating the COVID-19 pandemic. The amount of research on the use of mRNAs as preventive and therapeutic modalities has undergone explosive growth in the last few years. Nonetheless, the issue of the stability of mRNA molecules and their translation efficiency remains incompletely resolved. These characteristics of mRNA directly affect the expression level of a desired protein. Regulatory elements of RNA-5' and 3' untranslated regions (UTRs)-are responsible for translation efficiency. An optimal combination of the regulatory sequences allows mRNA to significantly increase the target protein's expression. We assessed the translation efficiency of mRNA encoding of firefly luciferase with various 5' and 3'UTRs in vitro on cell lines DC2.4 and THP1. We found that mRNAs containing 5'UTR sequences from eukaryotic genes HBB, HSPA1A, Rabb, or H4C2, or from the adenoviral leader sequence TPL, resulted in higher levels of luciferase bioluminescence 4 h after transfection of DC2.4 cells as compared with 5'UTR sequences used in vaccines mRNA-1273 and BNT162b2 from Moderna and BioNTech. mRNA containing TPL as the 5'UTR also showed higher efficiency (as compared with the 5'UTR from Moderna) at generating a T-cell response in mice immunized with mRNA vaccines encoding a multiepitope antigen. By contrast, no effects of various 5'UTRs and 3'UTRs were detectable in THP1 cells, suggesting that the observed effects are cell type specific. Further analyses enabled us to identify potential cell type-specific RNA-binding proteins that differ in landing sites within mRNAs with various 5'UTRs and 3'UTRs. Taken together, our data indicate high translation efficiency of TPL as a 5'UTR, according to experiments on DC2.4 cells and C57BL/6 mice.


Asunto(s)
Antígenos de Grupos Sanguíneos , Tuberculosis , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Vacunas de ARNm , Regiones no Traducidas 5'/genética , Regiones no Traducidas 3'/genética , Vacuna BNT162 , Pandemias , ARN Mensajero/genética
2.
Nucleic Acids Res ; 52(D1): D154-D163, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971293

RESUMEN

We present a major update of the HOCOMOCO collection that provides DNA binding specificity patterns of 949 human transcription factors and 720 mouse orthologs. To make this release, we performed motif discovery in peak sets that originated from 14 183 ChIP-Seq experiments and reads from 2554 HT-SELEX experiments yielding more than 400 thousand candidate motifs. The candidate motifs were annotated according to their similarity to known motifs and the hierarchy of DNA-binding domains of the respective transcription factors. Next, the motifs underwent human expert curation to stratify distinct motif subtypes and remove non-informative patterns and common artifacts. Finally, the curated subset of 100 thousand motifs was supplied to the automated benchmarking to select the best-performing motifs for each transcription factor. The resulting HOCOMOCO v12 core collection contains 1443 verified position weight matrices, including distinct subtypes of DNA binding motifs for particular transcription factors. In addition to the core collection, HOCOMOCO v12 provides motif sets optimized for the recognition of binding sites in vivo and in vitro, and for annotation of regulatory sequence variants. HOCOMOCO is available at https://hocomoco12.autosome.org and https://hocomoco.autosome.org.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción , Animales , Humanos , Ratones , Sitios de Unión/genética , Motivos de Nucleótidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Internet , Dominios y Motivos de Interacción de Proteínas/genética
3.
Microorganisms ; 11(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138131

RESUMEN

Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas, methane, as a source of energy-rich carbon. Over the years, significant progress has been made in understanding of mechanisms for methane utilization, mostly in bacterial systems, including the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium, lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics approaches provided vast amount of heterogeneous data that require the adaptation or development of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-scale mathematical modeling of its metabolism has been envisioned as one of the most productive strategies for the integration of muti-scale data to better understand methane metabolism and enable its biotechnological implementation. Herein, we provide an overview of various computational strategies implemented for methanotrophic systems. We highlight functional capabilities as well as limitations of the most popular web resources for the reconstruction, modification and optimization of the genome-scale metabolic models for methane-utilizing bacteria.

4.
Nucleic Acids Res ; 50(W1): W124-W131, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536253

RESUMEN

BioUML (https://www.biouml.org)-is a web-based integrated platform for systems biology and data analysis. It supports visual modelling and construction of hierarchical biological models that allow us to construct the most complex modular models of blood pressure regulation, skeletal muscle metabolism, COVID-19 epidemiology. BioUML has been integrated with git repositories where users can store their models and other data. We have also expanded the capabilities of BioUML for data analysis and visualization of biomedical data: (i) any programs and Jupyter kernels can be plugged into the BioUML platform using Docker technology; (ii) BioUML is integrated with the Galaxy and Galaxy Tool Shed; (iii) BioUML provides two-way integration with R and Python (Jupyter notebooks): scripts can be executed on the BioUML web pages, and BioUML functions can be called from scripts; (iv) using plug-in architecture, specialized viewers and editors can be added. For example, powerful genome browsers as well as viewers for molecular 3D structure are integrated in this way; (v) BioUML supports data analyses using workflows (own format, Galaxy, CWL, BPMN, nextFlow). Using these capabilities, we have initiated a new branch of the BioUML development-u-science-a universal scientific platform that can be configured for specific research requirements.


Asunto(s)
Modelos Biológicos , Programas Informáticos , Humanos , Biología Computacional , COVID-19/epidemiología , Biología de Sistemas
5.
Nucleic Acids Res ; 50(W1): W51-W56, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35446421

RESUMEN

We present ANANASTRA, https://ananastra.autosome.org, a web server for the identification and annotation of regulatory single-nucleotide polymorphisms (SNPs) with allele-specific binding events. ANANASTRA accepts a list of dbSNP IDs or a VCF file and reports allele-specific binding (ASB) sites of particular transcription factors or in specific cell types, highlighting those with ASBs significantly enriched at SNPs in the query list. ANANASTRA is built on top of a systematic analysis of allelic imbalance in ChIP-Seq experiments and performs the ASB enrichment test against background sets of SNPs found in the same source experiments as ASB sites but not displaying significant allelic imbalance. We illustrate ANANASTRA usage with selected case studies and expect that ANANASTRA will help to conduct the follow-up of GWAS in terms of establishing functional hypotheses and designing experimental verification.


Asunto(s)
Polimorfismo de Nucleótido Simple , Factores de Transcripción , Alelos , Sitios de Unión , Estudio de Asociación del Genoma Completo , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN
6.
Front Genet ; 12: 662846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178030

RESUMEN

The global trend toward the reduction of human spermatogenic function observed in many countries, including Russia, raised the problem of extensive screening and monitoring of male fertility and elucidation of its genetic and ethnic mechanisms. Recently, whole-exome sequencing (WES) was developed as a powerful tool for genetic analysis of complex traits. We present here the first Russian WES study for identification of new genes associated with semen quality. The experimental 3 × 2 design of the WES study was based on the analysis of 157 samples including three ethnic groups-Slavs (59), Buryats (n = 49), and Yakuts (n = 49), and two different semen quality groups-pathozoospermia (n = 95) and normospermia (n = 62). Additionally, our WES study group was negative for complete AZF microdeletions of the Y-chromosome. The normospermia group included men with normal sperm parameters in accordance with the WHO-recommended reference limit. The pathozoospermia group included men with impaired semen quality, namely, with any combined parameters of sperm concentration <15 × 106/ml, and/or progressive motility <32%, and/or normal morphology <4%. The WES was performed for all 157 samples. Subsequent calling and filtering of variants were carried out according to the GATK Best Practices recommendations. On the genotyping stage, the samples were combined into four cohorts: three sets corresponded to three ethnic groups, and the fourth set contained all the 157 whole-exome samples. Association of the obtained polymorphisms with semen quality parameters was investigated using the χ2 test. To prioritize the obtained variants associated with pathozoospermia, their effects were determined using Ensembl Variant Effect Predictor. Moreover, polymorphisms located in genes expressed in the testis were revealed based on the genomic annotation. As a result, the nine potential SNP markers rs6971091, rs557806, rs610308, rs556052, rs1289658, rs278981, rs1129172, rs12268007, and rs17228441 were selected for subsequent verification on our previously collected population sample (about 1,500 males). The selected variants located in seven genes FAM71F1, PPP1R15A, TRIM45, PRAME, RBM47, WDFY4, and FSIP2 that are expressed in the testis and play an important role in cell proliferation, meiosis, and apoptosis.

7.
Nat Commun ; 12(1): 2751, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980847

RESUMEN

Sequence variants in gene regulatory regions alter gene expression and contribute to phenotypes of individual cells and the whole organism, including disease susceptibility and progression. Single-nucleotide variants in enhancers or promoters may affect gene transcription by altering transcription factor binding sites. Differential transcription factor binding in heterozygous genomic loci provides a natural source of information on such regulatory variants. We present a novel approach to call the allele-specific transcription factor binding events at single-nucleotide variants in ChIP-Seq data, taking into account the joint contribution of aneuploidy and local copy number variation, that is estimated directly from variant calls. We have conducted a meta-analysis of more than 7 thousand ChIP-Seq experiments and assembled the database of allele-specific binding events listing more than half a million entries at nearly 270 thousand single-nucleotide polymorphisms for several hundred human transcription factors and cell types. These polymorphisms are enriched for associations with phenotypes of medical relevance and often overlap eQTLs, making candidates for causality by linking variants with molecular mechanisms. Specifically, there is a special class of switching sites, where different transcription factors preferably bind alternative alleles, thus revealing allele-specific rewiring of molecular circuitry.


Asunto(s)
Alelos , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Bases de Datos Genéticas , Dosificación de Gen , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Motivos de Nucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple , Unión Proteica , Sitios de Carácter Cuantitativo
8.
Nucleic Acids Res ; 49(D1): D104-D111, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231677

RESUMEN

The Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org/) contains uniformly annotated and processed NGS data related to gene transcription regulation: ChIP-seq, ChIP-exo, DNase-seq, MNase-seq, ATAC-seq and RNA-seq. With the latest release, the database has reached a new level of data integration. All cell types (cell lines and tissues) presented in the GTRD were arranged into a dictionary and linked with different ontologies (BRENDA, Cell Ontology, Uberon, Cellosaurus and Experimental Factor Ontology) and with related experiments in specialized databases on transcription regulation (FANTOM5, ENCODE and GTEx). The updated version of the GTRD provides an integrated view of transcription regulation through a dedicated web interface with advanced browsing and search capabilities, an integrated genome browser, and table reports by cell types, transcription factors, and genes of interest.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Genoma , Factores de Transcripción/genética , Transcripción Genética , Animales , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ontología de Genes , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Programas Informáticos , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
9.
BMC Genet ; 21(Suppl 1): 89, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092533

RESUMEN

BACKGROUND: In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. RESULTS: Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother's and children's health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP-promoter affinity, whose Pearson's coefficients of correlation between predicted and measured values were r = 0.84 (significance p <  0.025) and r = 0.98 (p <  0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP-promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP-promoter complexes is fourfold more frequent than SNP-induced improvement (p <  0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p <  0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. CONCLUSIONS: Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.


Asunto(s)
Cromosomas Humanos Y/genética , Reproducción/genética , Selección Genética , Bases de Datos Genéticas , Domesticación , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteína de Unión a TATA-Box/genética
10.
PLoS One ; 14(8): e0221760, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31465497

RESUMEN

Chromatin immunoprecipitation followed by sequencing, i.e. ChIP-Seq, is a widely used experimental technology for the identification of functional protein-DNA interactions. Nowadays, such databases as ENCODE, GTRD, ChIP-Atlas and ReMap systematically collect and annotate a large number of ChIP-Seq datasets. Comprehensive control of dataset quality is currently indispensable to select the most reliable data for further analysis. In addition to existing quality control metrics, we have developed two novel metrics that allow to control false positives and false negatives in ChIP-Seq datasets. For this purpose, we have adapted well-known population size estimate for determination of unknown number of genuine transcription factor binding regions. Determination of the proposed metrics was based on overlapping distinct binding sites derived from processing one ChIP-Seq experiment by different peak callers. Moreover, the metrics also can be useful for assessing quality of datasets obtained from processing distinct ChIP-Seq experiments by a given peak caller. We also have shown that these metrics appear to be useful not only for dataset selection but also for comparison of peak callers and identification of site motifs based on ChIP-Seq datasets. The developed algorithm for determination of the false positive control metric and false negative control metric for ChIP-Seq datasets was implemented as a plugin for a BioUML platform: https://ict.biouml.org/bioumlweb/chipseq_analysis.html.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Bases de Datos de Ácidos Nucleicos , Análisis de Secuencia de ADN , Algoritmos , Área Bajo la Curva , Sitios de Unión , Control de Calidad , Curva ROC , Factores de Transcripción/metabolismo
11.
Nucleic Acids Res ; 47(W1): W225-W233, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31131402

RESUMEN

BioUML (homepage: http://www.biouml.org, main public server: https://ict.biouml.org) is a web-based integrated environment (platform) for systems biology and the analysis of biomedical data generated by omics technologies. The BioUML vision is to provide a computational platform to build virtual cell, virtual physiological human and virtual patient. BioUML spans a comprehensive range of capabilities, including access to biological databases, powerful tools for systems biology (visual modelling, simulation, parameters fitting and analyses), a genome browser, scripting (R, JavaScript) and a workflow engine. Due to integration with the Galaxy platform and R/Bioconductor, BioUML provides powerful possibilities for the analyses of omics data. The plug-in-based architecture allows the user to add new functionalities using plug-ins. To facilitate a user focus on a particular task or database, we have developed several predefined perspectives that display only those web interface elements that are needed for a specific task. To support collaborative work on scientific projects, there is a central authentication and authorization system (https://bio-store.org). The diagram editor enables several remote users to simultaneously edit diagrams.


Asunto(s)
Bases de Datos Factuales , Internet , Modelos Biológicos , Programas Informáticos , Biología de Sistemas , Animales , Humanos
12.
Nucleic Acids Res ; 47(D1): D100-D105, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30445619

RESUMEN

The current version of the Gene Transcription Regulation Database (GTRD; http://gtrd.biouml.org) contains information about: (i) transcription factor binding sites (TFBSs) and transcription coactivators identified by ChIP-seq experiments for Homo sapiens, Mus musculus, Rattus norvegicus, Danio rerio, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Arabidopsis thaliana; (ii) regions of open chromatin and TFBSs (DNase footprints) identified by DNase-seq; (iii) unmappable regions where TFBSs cannot be identified due to repeats; (iv) potential TFBSs for both human and mouse using position weight matrices from the HOCOMOCO database. Raw ChIP-seq and DNase-seq data were obtained from ENCODE and SRA, and uniformly processed. ChIP-seq peaks were called using four different methods: MACS, SISSRs, GEM and PICS. Moreover, peaks for the same factor and peak calling method, albeit using different experiment conditions (cell line, treatment, etc.), were merged into clusters. To reduce noise, such clusters for different peak calling methods were merged into meta-clusters; these were considered to be non-redundant TFBS sets. Moreover, extended quality control was applied to all ChIP-seq data. Web interface to access GTRD was developed using the BioUML platform. It provides browsing and displaying information, advanced search possibilities and an integrated genome browser.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica , Transcripción Genética , Secuenciación de Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Bases de Datos Genéticas/tendencias , Programas Informáticos , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador , Navegador Web
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA