Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511169

RESUMEN

It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.


Asunto(s)
Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Filogenia , Tetraploidía , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 24(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176101

RESUMEN

The main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods. Here, the effect of long-term periods of tuber rest (at 2-4 °C) on main parameters of starches of potato tubers grown in vivo or in vitro were studied. Along with non-transgenic potatoes, Arabidopsis phytochrome B (AtPHYB) transformants were investigated. Distinct changes in starch micro and macro structures-an increase in proportion of amorphous lamellae and of large-sized and irregular-shaped granules, as well as shifts in thickness of the crystalline lamellae-were detected. The degree of such alterations, more pronounced in AtPHYB-transgenic tubers, increased with the longevity of tuber dormancy. By contrast, the polymorphic crystalline structure (B-type) of starch remained unchanged regardless of dormancy duration. Collectively, our data support the hypothesis that potato starch remains metabolically and structurally labile during the entire tuber life including the dormancy period. The revealed starch remodeling may be considered a process of tuber preadaptation to the upcoming sprouting stage.


Asunto(s)
Solanum tuberosum , Almidón , Humanos , Almidón/química , Solanum tuberosum/química , Tubérculos de la Planta , Plantas , Termodinámica
3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360972

RESUMEN

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Solanum tuberosum/metabolismo , Genes de Plantas , Desarrollo de la Planta , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Sacarosa/metabolismo
4.
Front Plant Sci ; 11: 613624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408733

RESUMEN

Cytokinins (CKs) were earlier shown to promote potato tuberization. Our study aimed to identify and characterize CK-related genes which constitute CK regulatory system in the core potato (Solanum tuberosum) genome. For that, CK-related genes were retrieved from the sequenced genome of the S. tuberosum doubled monoploid (DM) Phureja group, classified and compared with Arabidopsis orthologs. Analysis of selected gene expression was performed with a transcriptome database for the S. tuberosum heterozygous diploid line RH89-039-16. Genes responsible for CK signaling, biosynthesis, transport, and metabolism were categorized in an organ-specific fashion. According to this database, CK receptors StHK2/3 predominate in leaves and flowers, StHK4 in roots. Among phosphotransmitters, StHP1a expression largely predominates. Surprisingly, two pseudo-phosphotransmitters intended to suppress CK effects are hardly expressed in studied organs. Among B-type RR genes, StRR1b, StRR11, and StRR18a are actively expressed, with StRR1b expressing most uniformly in all organs and StRR11 exhibiting the highest expression in roots. By cluster analysis four types of prevailing CK-signaling chains were identified in (1) leaves and flowers, StHK2/3→S t H P1a→StRR1b/+; (2) shoot apical meristems, stolons, and mature tubers, StHK2/4→S t H P1a→StRR1b/+; (3) stems and young tubers, StHK2/4→S t H P1a→StRR1b/11/18a; and (4) roots and tuber sprouts, StHK4→S t H P1a→StRR11/18a. CK synthesis genes StIPT3/5 and StCYP735A are expressed mainly in roots followed by tuber sprouts, but rather weakly in stolons and tubers. By contrast, CK-activation genes StLOGs are active in stolons, and StLOG3b expression is even stolon-confined. Apparently, the main CK effects on tuber initiation are realized via activity of StLOG1/3a/3b/7c/8a genes in stolons. Current advances and future directions in potato research are discussed.

5.
Plant Cell Rep ; 38(6): 681-698, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30739137

RESUMEN

The study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology. Special attention is paid to recent insights into auxin function in potato tuberization and stress resistance. Taken together, the data discussed here leave no doubt on the important role of auxin in potato tuberization, particularly in the processes of tuber initiation, growth and sprouting. A new integrative model for the stage-dependent auxin action on tuberization is presented. In addition, auxin is shown to differentially affects the potato resistance to biotrophic and necrotrophic biopathogens. Thus, the modern auxin biology opens up new perspectives for further biotechnological improvement of potato crops.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
6.
J Exp Bot ; 69(16): 3839-3853, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29800344

RESUMEN

Potato is the most economically important non-cereal food crop. Tuber formation in potato is regulated by phytohormones, cytokinins (CKs) in particular. The present work studied CK signal perception in potato. The sequenced potato genome of doubled monoploid Phureja was used for bioinformatic analysis and as a tool for identification of putative CK receptors from autotetraploid potato cv. Désirée. All basic elements of multistep phosphorelay required for CK signal transduction were identified in the Phureja genome, including three genes orthologous to three CK receptor genes (AHK 2-4) of Arabidopsis. As distinct from Phureja, autotetraploid potato contains at least two allelic isoforms of each receptor type. Putative receptor genes from Désirée plants were cloned, sequenced and expressed, and the main characteristics of encoded proteins were determined, in particular their consensus motifs, modelled structure, ligand-binding properties, and ability to transmit CK signals. In all studied aspects the predicted sensor histidine kinases met the requirements for genuine CK receptors. Expression of potato CK receptors was found to be organ-specific and sensitive to growth conditions, particularly to sucrose content. Our results provide a solid basis for further in-depth study of CK signaling system and biotechnological improvement of potato.


Asunto(s)
Citocininas/metabolismo , Receptores de Superficie Celular/metabolismo , Solanum tuberosum/metabolismo , Alelos , Secuencia de Aminoácidos , Biotecnología , Genes de Plantas , Homocigoto , Filogenia , Regiones Promotoras Genéticas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Solanum tuberosum/genética , Sacarosa/metabolismo
7.
Plant Cell Rep ; 36(3): 419-435, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27999977

RESUMEN

KEY MESSAGE: Ectopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro. Adding indole-3-acetic acid (IAA) or kinetin to culture medium affected differently tuberization of tms1-transformed and control plants, depending also on sucrose content in the medium. Exogenous phytohormones ceased to stimulate the tuber initiation in transformants at high (5-8%) sucrose concentration, while in control plants the stimulation was observed in all experimental settings. Furthermore, exogenous auxin partly inhibited the tuber initiation, and exogenous cytokinin reduced the average tuber weight in most transformants at high sucrose content. The elevated auxin level in tubers of the transformants was accompanied with a decrease in content of cytokinin bases and their ribosides in tubers and most shoots. No concerted changes in contents of abscisic, jasmonic, salicylic acids and gibberellins in tubers were detected. The data on hormonal status indicated that the enhanced productivity of tms1 transformants was due to auxin and not mediated by other phytohormones. In addition, exogenous cytokinin was shown to upregulate the expression of genes encoding orthologs of auxin receptors. Overall, the results showed that tms1 expression and local increase in IAA level in transformants affect both the balance of endogenous cytokinins and the dynamics of tuberization in response to exogenous hormones (auxin, cytokinin), the latter reaction depending also on the carbohydrate supply. We introduce a basic model for the hormonal network controlling tuberization.


Asunto(s)
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Regiones Promotoras Genéticas , Solanum tuberosum/genética , Biomasa , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cinetina/farmacología , Especificidad de Órganos/efectos de los fármacos , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Solanum tuberosum/efectos de los fármacos , Transformación Genética/efectos de los fármacos
8.
J Integr Plant Biol ; 57(9): 734-44, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25421937

RESUMEN

Phytohormones, auxins in particular, play an important role in plant development and productivity. Earlier data showed positive impact of exogenous auxin on potato (Solanum tuberosum L.) tuberization. The aim of this study was to generate potato plants with increased auxin level predominantly in tubers. To this end, a pBinB33-tms1 vector was constructed harboring the Agrobacterium auxin biosynthesis gene tms1 fused to tuber-specific promoter of the class I patatin gene (B33-promoter) of potato. Among numerous independently generated B33:tms1 lines, those without visible differences from control were selected for detailed studies. In the majority of transgenic lines, tms1 gene transcription was detected, mostly in tubers rather than in shoots. Indoleacetic acid (IAA) content in tubers and the auxin tuber-to-shoot ratio were increased in tms1-expressing transformants. The organ-specific increase in auxin synthesis in B33:tms1-transformants accelerated and intensified the process of tuber formation, reduced the dose of carbohydrate supply required for in vitro tuberization, and decreased the photoperiodic dependence of tuber initiation. Overall, a positive correlation was observed between tms1 expression, IAA content in tubers, and stimulation of tuber formation. The revealed properties of B33:tms1 transformants imply an important role for auxin in potato tuberization and offer prospects to magnify potato productivity by a moderate organ-specific enhancement of auxin content.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA