Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 232: 116071, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209979

RESUMEN

Existing water and wastewater treatment techniques are becoming increasingly difficult to employ due to the discovery of new toxins, the rapid development of population and industrial activities, and the limited quantity of water resources. Treatment of wastewater is a critical need in modern civilization due to a scarcity of water resources and rising industrial activity. Some of the techniques utilized include adsorption, flocculation, filtration, and others, although they are only used for primary wastewater treatment. However, the development and deployment of modern wastewater management with high efficiency and low capitalization are critical in terms of mitigating the environmental consequences of waste. The employment of different nanomaterials in the treatment of wastewater has opened up a world of possibilities for heavy metal and pesticide removal, as well as the treatment of microbes and organic contaminants in wastewater. Nanotechnology is a rapidly evolving technology because of certain nanoparticle's outstanding physiochemical and biological capabilities as contrasted to bulk counterparts. Secondly, it has been established that this is a cost-effective treatment strategy with significant potential in wastewater management, transcending the limitations imposed by currently existing technology. Advances in nanotechnology to reduce water contamination have been presented in this review, including the use of various nanomaterials such as nanocatalysts, nanoadsorbents, and nanomembranes in the treatment of wastewater containing organic contaminants, hazardous metals, and virulent pathogens.


Asunto(s)
Nanopartículas , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Purificación del Agua/métodos , Filtración , Adsorción
2.
Chemosphere ; 313: 137350, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435317

RESUMEN

There are numerous elements of daily life where plastic is employed, yet it is uncertain exactly when it will deteriorate. Poly-(3-hydroxybutyrate) (PHB), a biodegradable polymer, is viewed as a possible substitute for synthetic plastics made from petroleum. With Pseudomonas putida SS9, the current study sought to enhance operational conditions and nutritional factors to enhance PHB production. To maximize the impacts of operational factors, a combination of response surface modeling (RSM) and artificial neural networks (ANN) has been applied. PHB content was used as the response while the interaction effects of the factors were examined. The optimal parameters for PHB synthesis were further tested in a lab scale fermentor. Under optimal conditions, 13.83 g/L of C, 0.57 g/L of N, 0.59 g/L of P, the maximal productivity of PHB obtained with Pseudomonas putida SS9 is 12.89 g/L after 84 h. A mean square value of 15.7 with P < 0.0001 were obtained from the ANOVA results of quadratic polynomial model using RSM. The same construct was employed in MATLAB software to train a feed-forward ANN using the back-propagation approach, generating 12.88 g/L. The data indicated that a properly trained ANN model outperforms the RSM model in prediction. Furthermore, employing dairy waste (cheese whey) as a low-cost feedstock resulted in an equally proportionate PHB yield of 12.02 g/L. Therefore, cheese whey appeared to be a viable alternative carbon source over optimized synthetic media.


Asunto(s)
Pseudomonas putida , Hidroxibutiratos , Plásticos , Biopolímeros , Poliésteres
3.
Sci Rep ; 10(1): 20705, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244058

RESUMEN

The present research is focused on the application of glass beads (GBs) in fixed biofilm reactor (FBR) for the treatment of simulated methylene blue (MB) wastewater for 9 weeks under aerobic conditions. The COD of MB wastewater showed a reduction of 86.48% from 2000 to 270.4 mg/L, and BOD was declined up to 97.7% from 1095.5 to 25.03 mg/L. A drastic increase in the pH was observed until the 3rd week (8.5 to 8.28), and later, marginal changes between 8.30 ± 0.02 were noticed. A dramatic fluctuation was observed in ammonia concentration which increased (74.25 mg/L) up till the 2nd week, and from the 3rd week it started declining. In the 9th week, the ammonia concentration dropped to 16.5 mg/L. The color intensity increased significantly up till the 2nd week (259,237.46 Pt/Co) of the experiment and started decreasing slowly thereafter. The SEM-EDX analysis has shown the maximum quantity of carbon content in the GBs without biofilm, and then in the GB samples of 1st, and 9th-week old aerobic biofilms. Furthermore, Raman spectroscopy results revealed that the 9th-week GBs has a fine and strong MB peak and matched with that of the MB stock solution. Overall, the results have shown that the GBs filter media were suitable for the development of active biofilm communities for the treatment of dye wastewater. Thus, GBs-FBR system can be used for wastewater treatment to solve the current problem of industrial pollution in many countries and to protect the aquatic environment from dye pollution caused by the textile industry.

4.
Curr Drug Metab ; 21(3): 211-220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32316889

RESUMEN

AIM AND OBJECTIVE: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). OVERVIEW: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. CONCLUSION: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Fermentación , Glutaminasa/biosíntesis , Glutaminasa/farmacología , Bacterias , Hongos , Humanos , Cinética
5.
Curr Drug Metab ; 21(1): 11-24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31951174

RESUMEN

L-glutaminase has versatile applications in pharma and food industries. In pharmaceutical industry, L-glutaminase can be used as anti-oxidant and anti-cancer agent to treat Acute Lymphocytic Leukaemia (ALL). Whereas, in the food industry, L-glutaminase is used for acrylamide degradation, theanine production, flavour enhancer, soy sauce and many. The other applications include nitrogen metabolism and its use as biosensor in hybridoma technology. Both intra-cellular and extra-cellular L-glutaminases from wide range of sources were identified. Because of its diverse applications, there is a need to improve the production of L-glutaminase by enzyme engineering technology. Effect of recombination on L-glutaminase production was also reported. Researchers also confirmed the antitumor properties of L-glutaminase by conducting in vitro, in vivo and in silico studies. Bacillus sps. and Aspergillus sps. are the commercial producers of L-glutaminase. In this review, the applications, different sources of Lglutaminase, anti-cancer properties were discussed.


Asunto(s)
Amidohidrolasas/química , Glutaminasa/química , Animales , Antineoplásicos/química , Industria Farmacéutica/métodos , Aromatizantes/química , Industria de Alimentos/métodos , Humanos
6.
Data Brief ; 12: 234-241, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459095

RESUMEN

In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA