Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(1): e1009981, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982771

RESUMEN

Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Cromosómicas no Histona/genética , Mutación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Membrana Basal/metabolismo , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Movimiento Celular , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Modelos Animales , Fenotipo , Análisis de la Célula Individual
2.
Biophys J ; 120(19): 4149-4161, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33964274

RESUMEN

The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.


Asunto(s)
Técnicas Biosensibles , Ciclo Celular , Rastreo Celular
3.
Elife ; 92020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33350383

RESUMEN

Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.


All living things are made up of cells that form the different tissues, organs and structures of an organism. The human body, for example, is thought to consist of some 37 trillion cells and harbor over 200 cell types. To maintain a working organism, cells divide to create new cells and replace the ones that have died. Cell division is a tightly controlled process consisting of several steps, and cells continuously face a Shakespearean dilemma of deciding whether to continue dividing (also known as cell proliferation) or to halt the process (known as quiescence). This difficult balancing act is critical during all stages of life, from embryonic development to tissue growth in an adult. Problems in the underlying pathways can result in diseases such as cancer. Cell division is driven by proteins called CDKs, which help cells to complete their cell cycle in the correct sequence. To gain more insight into this complex process, scientists have developed tools for monitoring CDKs. One such tool is a fluorescent biosensor, a molecule that can be inserted into cells that glows and moves in response to CDK activity. The biosensor can be studied and measured in each cell using a microscope. Adikes, Kohrman, Martinez et al. adapted and optimized an existing CDK biosensor to help study cell division and the switch between proliferation and quiescence in two common research organisms, the nematode Caenorhabditis elegans and the zebrafish. Analysis of this biosensor showed that CDK activity at the end of cell division is higher if the cells will divide again but is low if the cells are going to become quiescent. This could suggest that the decision of a cell between proliferation and quiescence may happen earlier than expected. The optimized biosensor is sensitive enough to detect these differences and can even measure variations that influence proliferation in a region on C. elegans that was once thought to be unchanging. The development of this biosensor provides a useful research tool that could be used in other living organisms. Many research questions relate to cell division and so the applications of this tool are wide ranging.


Asunto(s)
Técnicas Biosensibles/métodos , Caenorhabditis elegans/citología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiología , División Celular , Proliferación Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo
4.
Science ; 360(6386)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674564

RESUMEN

True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Animales , Movimiento Celular , Endocitosis , Ojo/ultraestructura , Humanos , Mitosis , Orgánulos , Análisis de la Célula Individual , Pez Cebra
5.
Trends Cell Biol ; 27(1): 12-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634432

RESUMEN

Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.


Asunto(s)
Ciclo Celular , Invasividad Neoplásica/patología , Animales , Membrana Basal/patología , Desarrollo Embrionario , Humanos , Modelos Biológicos , Neoplasias/patología , Neoplasias/terapia
6.
Dev Cell ; 35(2): 162-74, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26506306

RESUMEN

Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Diferenciación Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Histona Desacetilasas/biosíntesis , Invasividad Neoplásica/genética , Actinas/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/genética , Invasividad Neoplásica/patología , Podosomas/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA